我正在尝试使用PandasSchema验证我的DataFrame库。我一直在验证一些列,例如:
1.ip_address-应包含以下格式1.1.1.1的ip地址,或者如果任何其他值引发错误,则应为null。2.initial_date-格式为yyyy-mm-dd h:m:s或mm-dd-yyyy-h:m.s等。3.customertype应该在['type1','type2','ype3']中,否则会引发错误。4.客户满意=是/否或空白5.customerid不应长于5个字符,例如-cus01、cus026.时间应为%:%:格式或h:m:s格式,否则将引发异常。
from pandas_schema import Column, Schema
def check_string(sr):
try:
str(sr)
except InvalidOperation:
return False
return True
def check_datetime(self,dec):
try:
datetime.datetime.strptime(dec, self.date_format)
return True
except:
return False
def check_int(num):
try:
int(num)
except ValueError:
return False
return True
string_validation=[CustomElementValidation(lambda x: check_string(x).str.len()>5 ,'Field Correct')]
int_validation = [CustomElementValidation(lambda i: check_int(i), 'is not integer')]
contain_validation = [CustomElementValidation(lambda y: check_string(y) not in['type1','type2','type3'], 'Filed is correct')]
date_time_validation=[CustomElementValidation(lambda dt: check_datetime(dt).strptime('%m/%d/%Y %H:%M %p'),'is not a date
time')]
null_validation = [CustomElementValidation(lambda d: d is not np.nan, 'this field cannot be null')]
schema = Schema([
Column('CompanyID', string_validation + null_validation),
Column('initialdate', date_time_validation),
Column('customertype', contain_validation),
Column('ip', string_validation),
Column('customersatisfied', string_validation)])
errors = schema.validate(combined_df)
errors_index_rows = [e.row for e in errors]
pd.DataFrame({'col':errors}).to_csv('errors.csv')
我刚刚看了PandasSchema的文档,如果不是全部的话,大多数人都在寻找开箱即用的功能。看看:
- InListValidation
- IsD类型验证
- 日期格式验证
- 匹配模式验证
作为解决问题的快速尝试,以下内容应该有效:
from pandas_schema.validation import (
InListValidation
,IsDtypeValidation
,DateFormatValidation
,MatchesPatternValidation
)
schema = Schema([
# Match a string of length between 1 and 5
Column('CompanyID', [MatchesPatternValidation(r".{1,5}")]),
# Match a date-like string of ISO 8601 format (https://www.iso.org/iso-8601-date-and-time-format.html)
Column('initialdate', [DateFormatValidation("%Y-%m-%d %H:%M:%S")], allow_empty=True),
# Match only strings in the following list
Column('customertype', [InListValidation(["type1", "type2", "type3"])]),
# Match an IP address RegEx (https://www.oreilly.com/library/view/regular-expressions-cookbook/9780596802837/ch07s16.html)
Column('ip', [MatchesPatternValidation(r"(?:[0-9]{1,3}.){3}[0-9]{1,3}")]),
# Match only strings in the following list
Column('customersatisfied', [InListValidation(["yes", "no"])], allow_empty=True)
])