为什么我的反向传播算法的性能停滞不前



我正在学习如何编写神经网络,目前我正在研究一种具有一个输入层、一个隐藏层和一个输出层的反向传播算法。算法正在运行,当我抛出一些测试数据时,

x_train = np.array([[1., 2., -3., 10.], [0.3, -7.8, 1., 2.]])
y_train = np.array([[10, -3, 6, 1], [1, 1, 6, 1]])

在我的算法中,使用3个隐藏单元的默认值和10e-4的默认学习率,

Backprop.train(x_train, y_train, tol = 10e-1)
x_pred = Backprop.predict(x_train),

我得到了好的结果:

Tolerances: [10e-1, 10e-2, 10e-3, 10e-4, 10e-5]
Iterations: [2678, 5255, 7106, 14270, 38895]
Mean absolute error: [0.42540, 0.14577, 0.04264, 0.01735, 0.00773]
Sum of squared errors: [1.85383, 0.21345, 0.01882, 0.00311, 0.00071].

每次误差平方和都会像我预期的那样下降一个小数。然而,当我使用像这样的测试数据时

X_train = np.random.rand(20, 7)
Y_train = np.random.rand(20, 2)
Tolerances: [10e+1, 10e-0, 10e-1, 10e-2, 10e-3]
Iterations: [11, 19, 63, 80, 7931],
Mean absolute error: [0.30322, 0.25076, 0.25292, 0.24327, 0.24255],
Sum of squared errors: [4.69919, 3.43997, 3.50411, 3.38170, 3.16057],

没有什么真正的改变。我已经检查了我的隐藏单元、梯度和权重矩阵,它们都不同,梯度确实在缩小,就像我在反投影算法中设置的一样

if ( np.sum(E_hidden**2) + np.sum(E_output**2) ) < tol: 
learning = False,

其中E_ hidden和E_ output是我的梯度矩阵。我的问题是:尽管梯度正在缩小,但对于某些数据,指标实际上保持不变,这怎么可能呢?我该怎么办

我的背面看起来是这样的:

class Backprop:

def sigmoid(r):
return (1 + np.exp(-r)) ** (-1)
def train(x_train, y_train, hidden_units = 3, learning_rate = 10e-4, tol = 10e-3):
# We need y_train to be 2D. There should be as many rows as there are x_train vectors
N = x_train.shape[0]
I = x_train.shape[1]
J = hidden_units 
K = y_train.shape[1] # Number of output units
# Add the bias units to x_train
bias = -np.ones(N).reshape(-1,1) # Make it 2D so we can stack it
# Make the row vector a column vector for easier use when applying matrices. Afterwards, x_train.shape = (N, I+1)
x_train = np.hstack((x_train, bias)).T # x_train.shape = (I+1, N) -> N column vectors of respective length I+1

# Create our weight matrices
W_input = np.random.rand(J, I+1) # W_input.shape = (J, I+1)
W_hidden = np.random.rand(K, J+1) # W_hidden.shape = (K, J+1)
m = 0
learning = True
while learning:
##### ----- Phase 1: Forward Propagation ----- #####
# Create the total input to the hidden units
u_hidden = W_input @ x_train # u_hidden.shape = (J, N) -> N column vectors of respective length J. For every training vector we                                            # get J hidden states
# Create the hidden units 

h = Backprop.sigmoid(u_hidden) # h.shape = (J, N)
# Create the total input to the output units

bias = -np.ones(N)
h = np.vstack((h, bias)) # h.shape = (J+1, N)
u_output = W_hidden @ h # u_output.shape = (K, N). For every training vector we get K output states. 
# In the code itself the following is not necessary, because, as we remember from the above, the output activation function
# is the identity function, but let's do it anyway for the sake of clarity
y_pred = u_output.copy() # Now, y_pred has the same shape as y_train


##### ----- Phase 2: Backward Propagation ----- #####
# We will calculate the delta terms now and begin with the delta term of the output unit

# We will transpose several times now. Before, having column vectors was convenient, because matrix multiplication is 
# more intuitive then. But now, we need to work with indices and need the right dimensions. Yes, loops are inefficient,
# they provide much more clarity so that we can easily connect the theory above with our code. 
# We don't need the delta_output right now, because we will update W_hidden with a loop. But we need it for the delta term 
# of the hidden unit.
delta_output = y_pred.T - y_train 
# Calculate our error gradient for the output units
E_output = np.zeros((K, J+1))
for k in range(K):
for j in range(J+1):
for n in range(N):
E_output[k, j] += (y_pred.T[n, k] - y_train[n, k]) * h.T[n, j] 
# Calculate our change in W_hidden
W_delta_output = -learning_rate * E_output
# Update the old weights
W_hidden = W_hidden + W_delta_output
# Let's calculate the delta term of the hidden unit
delta_hidden = np.zeros((N, J+1))
for n in range(N):
for j in range(J+1):
for k in range(K):
delta_hidden[n, j] += h.T[n, j]*(1 - h.T[n, j]) * delta_output[n, k] * W_delta_output[k, j]
# Calculate our error gradient for the hidden units, but exclude the hidden bias unit, because W_input and the hidden bias
# unit don't share any relation at all
E_hidden = np.zeros((J, I+1))
for j in range(J):
for i in range(I+1):
for n in range(N):
E_hidden[j, i] += delta_hidden[n, j]*x_train.T[n, i]
# Calculate our change in W_input
W_delta_hidden = -learning_rate * E_hidden
W_input = W_input + W_delta_hidden

if ( np.sum(E_hidden**2) + np.sum(E_output**2) ) < tol: 
learning = False

m += 1 # Iteration count

Backprop.weights = [W_input, W_hidden]
Backprop.iterations = m
Backprop.errors = [E_hidden, E_output]

##### ----- #####

def predict(x):
N = x.shape[0]
# x1 = Backprop.weights[1][:,:-1] @ Backprop.sigmoid(Backprop.weights[0][:,:-1] @ x.T) # Trying this we see we really need to add
#  a bias here the bias if we also train using bias
# Add the bias units to x
bias = -np.ones(N).reshape(-1,1) # Make it 2D so we can stack it
# Make the row vector a column vector for easier use when applying matrices.
x = np.hstack((x, bias)).T
h = Backprop.weights[0] @ x
u = Backprop.sigmoid(h) # We need to transform the data using the sigmoidal function
h = np.vstack((u, bias.reshape(1, -1)))
return (Backprop.weights[1] @ h).T

我找到了答案。如果在Backprop.predict中,我会写

output = (Backprop.weights[1] @ h).T
return output

与上述情况不同,一切都很顺利。

最新更新