我目前没有解决这个问题的方法,所以我拼命想解决这个问题,无论多么麻烦,只要我的代码能重新工作。。。
我想用强迫一个寓言对象
as_fable
文件表明这是可能的:
## S3 method for class 'tbl_ts'
as_fable(x, response, distribution, ...)
但是当我指定这个函数的输入参数时,我总是会得到一个错误。
示例:
library(tsibbledata)
library(tsibble)
library(fable)
library(fabletools)
aus <- tsibbledata::hh_budget
fit <- fabletools::model(aus, ARIMA = ARIMA(Debt))
fc_tsibble <- fit %>%
fabletools::forecast(., h = 2) %>%
as_tibble(.) %>%
tsibble::as_tsibble(., key = c(Country, .model), index = Year)
fc_tsibble
# A tsibble: 8 x 5 [1Y]
# Key: Country, .model [4]
Country .model Year Debt .mean
<chr> <chr> <dbl> <dist> <dbl>
1 Australia ARIMA 2017 N(215, 21) 215.
2 Australia ARIMA 2018 N(221, 63) 221.
3 Canada ARIMA 2017 N(188, 7) 188.
4 Canada ARIMA 2018 N(192, 21) 192.
5 Japan ARIMA 2017 N(106, 3.8) 106.
6 Japan ARIMA 2018 N(106, 7.6) 106.
7 USA ARIMA 2017 N(109, 11) 109.
8 USA ARIMA 2018 N(110, 29) 110.
class(fc_tsibble)
[1] "tbl_ts" "tbl_df" "tbl" "data.frame"
强迫寓言导致错误:
as_fable(fc_tsibble, response = .mean, distribution = Debt)
Error in eval_tidy(enquo(response)) : object '.mean' not found
非常感谢您的帮助!
这不是最直观的错误消息,但我以前用过这个函数。实际上,您必须将Debt
传递给这两个参数。我认为错误消息引用.mean
是因为内部函数引发了错误。
library(tsibbledata)
library(tsibble)
library(fable)
library(fabletools)
aus <- tsibbledata::hh_budget
fit <- fabletools::model(aus, ARIMA = ARIMA(Debt))
fc_tsibble <- fit %>%
fabletools::forecast(., h = 2) %>%
as_tibble(.) %>%
tsibble::as_tsibble(., key = c(Country, .model), index = Year)
fc_tsibble
#> # A tsibble: 8 x 5 [1Y]
#> # Key: Country, .model [4]
#> Country .model Year Debt .mean
#> <chr> <chr> <dbl> <dist> <dbl>
#> 1 Australia ARIMA 2017 N(215, 21) 215.
#> 2 Australia ARIMA 2018 N(221, 63) 221.
#> 3 Canada ARIMA 2017 N(188, 7) 188.
#> 4 Canada ARIMA 2018 N(192, 21) 192.
#> 5 Japan ARIMA 2017 N(106, 3.8) 106.
#> 6 Japan ARIMA 2018 N(106, 7.6) 106.
#> 7 USA ARIMA 2017 N(109, 11) 109.
#> 8 USA ARIMA 2018 N(110, 29) 110.
fbl <- as_fable(fc_tsibble, response = "Debt", distribution = "Debt")
fbl
#> # A fable: 8 x 5 [1Y]
#> # Key: Country, .model [4]
#> Country .model Year Debt .mean
#> <chr> <chr> <dbl> <dist> <dbl>
#> 1 Australia ARIMA 2017 N(215, 21) 215.
#> 2 Australia ARIMA 2018 N(221, 63) 221.
#> 3 Canada ARIMA 2017 N(188, 7) 188.
#> 4 Canada ARIMA 2018 N(192, 21) 192.
#> 5 Japan ARIMA 2017 N(106, 3.8) 106.
#> 6 Japan ARIMA 2018 N(106, 7.6) 106.
#> 7 USA ARIMA 2017 N(109, 11) 109.
#> 8 USA ARIMA 2018 N(110, 29) 110.
由reprex包(v0.3.0(于2020-09-28创建
如果不引用分布变量,它也会起作用。
as_fable(fc_tsibble, response = "Debt", distribution = Debt)
#> # A fable: 8 x 5 [1Y]
#> # Key: Country, .model [4]
#> Country .model Year Debt .mean
#> <chr> <chr> <dbl> <dist> <dbl>
#> 1 Australia ARIMA 2017 N(215, 21) 215.
#> 2 Australia ARIMA 2018 N(221, 63) 221.
#> 3 Canada ARIMA 2017 N(188, 7) 188.
#> 4 Canada ARIMA 2018 N(192, 21) 192.
#> 5 Japan ARIMA 2017 N(106, 3.8) 106.
#> 6 Japan ARIMA 2018 N(106, 7.6) 106.
#> 7 USA ARIMA 2017 N(109, 11) 109.
#> 8 USA ARIMA 2018 N(110, 29) 110.
注意,在文档中,它指定response
参数应该是一个字符向量:
响应
响应变量的字符向量。
然而,如果你这样做,你仍然会得到一个错误:
as_fable(fc_tsibble, response = ".mean", distribution = Debt)
#> Error: `fbl[[chr_dist]]` must be a vector with type <distribution>.
#> Instead, it has type <distribution>.
这个错误消息也是不直观的,而且有些冲突。这就是我了解到您实际上想要将分布列传递给两个参数的地方:
as_fable(fc_tsibble, response = "Debt", distribution = Debt)
#> # A fable: 8 x 5 [1Y]
#> # Key: Country, .model [4]
#> Country .model Year Debt .mean
#> <chr> <chr> <dbl> <dist> <dbl>
#> 1 Australia ARIMA 2017 N(215, 21) 215.
#> 2 Australia ARIMA 2018 N(221, 63) 221.
#> 3 Canada ARIMA 2017 N(188, 7) 188.
#> 4 Canada ARIMA 2018 N(192, 21) 192.
#> 5 Japan ARIMA 2017 N(106, 3.8) 106.
#> 6 Japan ARIMA 2018 N(106, 7.6) 106.
#> 7 USA ARIMA 2017 N(109, 11) 109.
#> 8 USA ARIMA 2018 N(110, 29) 110.
as_fable(fc_tsibble, response = "Debt", distribution = "Debt")
#> # A fable: 8 x 5 [1Y]
#> # Key: Country, .model [4]
#> Country .model Year Debt .mean
#> <chr> <chr> <dbl> <dist> <dbl>
#> 1 Australia ARIMA 2017 N(215, 21) 215.
#> 2 Australia ARIMA 2018 N(221, 63) 221.
#> 3 Canada ARIMA 2017 N(188, 7) 188.
#> 4 Canada ARIMA 2018 N(192, 21) 192.
#> 5 Japan ARIMA 2017 N(106, 3.8) 106.
#> 6 Japan ARIMA 2018 N(106, 7.6) 106.
#> 7 USA ARIMA 2017 N(109, 11) 109.
#> 8 USA ARIMA 2018 N(110, 29) 110.