r-使用带循环的不同长度的不同数据帧中的纬度和经度数据计算距离



我有两个不同长度的数据帧,每个数据帧都有一个经纬度坐标。我想通过计算纬度/经度点之间的距离来连接这两个数据帧。

为了简单起见,数据帧A(起始点(具有以下结构

ID     long      lat 
1 -89.92702 44.19367 
2 -89.92525 44.19654 
3 -89.92365 44.19756 
4 -89.91949 44.19848 
5 -89.91359 44.19818  

数据帧B(终点(具有类似的结构,但更短

ID      LAT       LON
1  43.06519 -87.91446
2  43.14490 -88.07172
3  43.08969 -87.91202

我想计算每个点之间的距离,这样我就可以以一个合并到a的数据帧结束,该数据帧具有A1和B1、A1和B2、A1和B3之间的距离。此外,对于A$ID中A的所有值和B$ID 的所有值,应重复此操作

A$ID   B$ID
1      1
2      2
3      3
4
5

在发布这篇文章之前,我咨询了几个Stack Overflow线程(包括这篇和this Medium帖子,但我不确定如何处理循环,尤其是因为列表的长度不同

谢谢!

我认为在这里可以非常简洁地使用outer

library(geosphere)
d <- outer(1:nrow(A), 1:nrow(B), Vectorize(function(x, y) distm(A[x, 2:3], B[y, 3:2])))
cbind(A, `colnames<-`(d, paste0("B", seq(nrow(B)))))
#   ID      long      lat       B1       B2       B3
# 1  1 -89.92702 44.19367 205173.6 189641.7 203652.9
# 2  2 -89.92525 44.19654 205252.6 189722.5 203728.1
# 3  3 -89.92365 44.19756 205219.0 189689.8 203692.6
# 4  4 -89.91949 44.19848 205015.6 189488.0 203486.2
# 5  5 -89.91359 44.19818 204620.0 189093.8 203087.6

数据:

A <- read.table(header=T, text="ID     long      lat 
1 -89.92702 44.19367 
2 -89.92525 44.19654 
3 -89.92365 44.19756 
4 -89.91949 44.19848 
5 -89.91359 44.19818")
B <- read.table(header=T, text="ID      LAT       LON
1  43.06519 -87.91446
2  43.14490 -88.07172
3  43.08969 -87.91202")

这里有一个使用两个包的解决方案:sftidyverse。第一个用于将数据转换为简单的特征并计算距离;而第二个用于将数据放入所需格式。

library(tidyverse)
library(sf)
# Transform data into simple features
sfA <- st_as_sf(A, coords = c("long","lat"))
sfB <- st_as_sf(B, coords = c("LON","LAT"))
# Calculate distance between all entries of sf1 and sf2
distances <- st_distance(sfA, sfB, by_element = F)
# Set colnames for distances matrix
colnames(distances) <- paste0("B",1:3)
# Put the results in the desired format
# Transform distances matrix into a tibble
as_tibble(distances) %>%
# Get row names and add them as a column
rownames_to_column() %>%
# Set ID as the column name for the row numbers
rename("ID" = "rowname") %>%
# Transform ID to numeric
mutate_at(vars(ID), as.numeric) %>%
# Join with the original A data frame
right_join(A, by = "ID") %>%
# Change the order of columns
select(ID, long, lat, everything()) %>%
# Put data into long format
pivot_longer(cols = starts_with("B"),
names_to = "B_ID",
names_pattern = "B(\d)",
values_to = "distance")

相关内容

  • 没有找到相关文章

最新更新