假设我有如下数据:
tibble(
A = c(1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5),
B = c(1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 1, 2, 3, 4, 1, 1),
)
即
# A tibble: 16 x 2
A B
<dbl> <dbl>
1 1 1
2 2 1
3 2 2
4 2 1
5 2 2
6 2 3
7 3 1
8 3 2
9 3 1
10 3 1
11 4 1
12 4 2
13 4 3
14 4 4
15 4 1
16 5 1
每次在变量a(即(定义的组内开始新序列时,我如何创建sub_id
tibble(
A = c(1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5),
B = c(1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 1, 2, 3, 4, 1, 1),
sub_id = c(1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1)
)
# A tibble: 16 x 3
A B sub_id
<dbl> <dbl> <dbl>
1 1 1 1
2 2 1 1
3 2 2 1
4 2 1 2
5 2 2 2
6 2 3 2
7 3 1 1
8 3 2 1
9 3 1 2
10 3 1 3
11 4 1 1
12 4 2 1
13 4 3 1
14 4 4 1
15 4 1 2
16 5 1 1
希望这是明确的。我想我在追求一种与行号相反的方法
提前感谢
詹姆斯。
使用base R
df$sub_id <- with(df, ave(B ==1, A, FUN = cumsum))
您得到了"配料";已经布局。
(i( 对于A列的每组(ii(检查新序列是否启动
以下内容基于{dplyr}
。为了演示的目的,我创建了一个额外的列/变量来显示";启动条件";。您可以将其合并为一个调用。
我使用了这样一个事实,即在TRUE/FALSE上求和将TRUE编码为1。如果这对你来说不明显,你可以使用as.numeric(B == 1)
library(dplyr)
library(tibble)
# load example data
df <- tibble(
A = c(1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 5),
B = c(1, 1, 2, 1, 2, 3, 1, 2, 1, 1, 1, 2, 3, 4, 1, 1),
sub_id = c(1, 1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 1, 1, 2, 1)
)
# perform group-wise operations
df %>%
group_by(A) %>%
mutate(
# --------------- highlight start of new sequence --------------
start = B == 1
# --------------- create cumsum over TRUEs----------------------
, sub_id2 = cumsum(start)
)
这就产生了你想要的:
# A tibble: 16 x 5
# Groups: A [5]
A B sub_id start sub_id2
<dbl> <dbl> <dbl> <lgl> <int>
1 1 1 1 TRUE 1
2 2 1 1 TRUE 1
3 2 2 1 FALSE 1
4 2 1 2 TRUE 2
5 2 2 2 FALSE 2
6 2 3 2 FALSE 2
7 3 1 1 TRUE 1
8 3 2 1 FALSE 1
9 3 1 2 TRUE 2
10 3 1 3 TRUE 3
11 4 1 1 TRUE 1
12 4 2 1 FALSE 1
13 4 3 1 FALSE 1
14 4 4 1 FALSE 1
15 4 1 2 TRUE 2
16 5 1 1 TRUE 1
我们可以使用group_by
和cumsum
:
library(dplyr)
df %>%
group_by(A) %>%
mutate(sub_id = cumsum(B==1)
输出:
# Groups: A [5]
A B sub_id
<dbl> <dbl> <int>
1 1 1 1
2 2 1 1
3 2 2 1
4 2 1 2
5 2 2 2
6 2 3 2
7 3 1 1
8 3 2 1
9 3 1 2
10 3 1 3
11 4 1 1
12 4 2 1
13 4 3 1
14 4 4 1
15 4 1 2
16 5 1 1
data.table
选项
> setDT(df)[, sub_id := cumsum(B == 1), A][]
A B sub_id
1: 1 1 1
2: 2 1 1
3: 2 2 1
4: 2 1 2
5: 2 2 2
6: 2 3 2
7: 3 1 1
8: 3 2 1
9: 3 1 2
10: 3 1 3
11: 4 1 1
12: 4 2 1
13: 4 3 1
14: 4 4 1
15: 4 1 2
16: 5 1 1