嗨,伙计们,我试图刮一些关于zalando鞋的信息,并使用Seleinum webdriver保存价格,标题,日期和小时在不同的变量。这是我的代码:
from selenium import webdriver
from selenium.webdriver.common.by import By
import csv
DRIVER_PATH = 'C:chromedriver.exe'
driver = webdriver.Chrome(executable_path=DRIVER_PATH)
driver.get('https://www.zalando.es/release-calendar/zapatillas-mujer/')
#Get the data of product 1 (If I change the /div/div[1]/div and I choose another number, it will get ther data of other shoe)
product_1 = driver.find_element(By.XPATH, '//*[@id="release-calendar"]/div/div[1]/div')
element_text = product_1.text
print(element_text)
当我打印下一段代码的element_text时,我得到了很多关于产品的信息。我想在不同的变量中保护它,所以我尝试了一件事(继续阅读)
109, 95€耐克运动装WMNS扣篮低cz2022年11月10日,8:15Recordarmelo
所以事情是,在这段小代码工作后,我试图分割数据,添加这段代码,然后在不同的变量中保护不同类型的数据,但我有一个问题:
from selenium import webdriver
from selenium.webdriver.common.by import By
import csv
DRIVER_PATH = 'C:chromedriver.exe'
driver = webdriver.Chrome(executable_path=DRIVER_PATH)
driver.get('https://www.zalando.es/release-calendar/zapatillas-mujer/')
#Select product 1
product_1 = driver.find_element(By.XPATH, '//*[@id="release-calendar"]/div/div[1]/div')
element_text = product_1.text
#Split the data
element_text_split = element_text.split()
#Price 1 --> Result=109.95
price_1 =element_text_split[0]
print(price_1)
#Result=109,95
#Title 1 --> Result=€
title_1 =element_text_split[1]
print(title_1)
这两次打印的结果是:"109.95";和"€">
我认为element_text_split[1]是Nike Sportswear,但不是,它是€符号,因为我通过它们之间的空格分割数据。
如果我想获得鞋子的标题,这是一个大问题,因为名称之间没有相同的空格,如:Nike Dunk Low Cz或Air Jordan One Mid 1
如何解决这个问题??Thaanks
我想你可能在搜索这样的东西?
# Needed libs
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
# We create the driver
DRIVER_PATH = 'C:chromedriver.exe'
driver = webdriver.Chrome(executable_path=DRIVER_PATH)
# We maximize the window
driver.maximize_window()
# We navigate to the url
url='https://www.zalando.es/release-calendar/zapatillas-mujer/'
driver.get(url)
# We save a list of elements that are products (search for that xpath in the page and you will see what kind of element it is)
products = WebDriverWait(driver, 20).until(EC.presence_of_all_elements_located((By.XPATH, "//div[@id='release-calendar']//div[contains(@data-cid,'cid')]")))
# We make a loop for that list and for each of then we take the price, the brand, the model and the date.
for i, product in enumerate(products):
price = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.XPATH, f"//div[@data-cid='cid{i+1}']/div[2]"))).text
brand = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.XPATH, f"//div[@data-cid='cid{i+1}']/div[3]"))).text
model = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.XPATH, f"//div[@data-cid='cid{i+1}']/div[4]"))).text
date = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.XPATH, f"//div[@data-cid='cid{i+1}']/div[5]"))).text
url = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.XPATH, f"//div[@data-cid='cid{i+1}']//a"))).get_attribute("href")
image = WebDriverWait(driver, 20).until(EC.presence_of_element_located((By.XPATH, f"//div[@data-cid='cid{i+1}']//img"))).get_attribute("src")
print(f"""{price}
{brand}
{model}
{date}
{url}
{image}
""")
一个想法是查看许多不同产品的变量element_text,并决定一种不同的方法来分割文本——split方法可以接受一个较小的字符串来分割较长的字符串。
如果这不起作用,您也可以遍历element_text_split变量(它只是一个字符串列表),并通过查找某些较小的字符串或使用regex来分解字符串列表。
例如,要查找价格,您可以查找数字,一个句号,然后再查找数字。我猜产品的名字不是before就是after。Gl !
使用selenium和bs4可以强大地获取所需的数据
from selenium import webdriver
import time
from bs4 import BeautifulSoup
from selenium.webdriver.chrome.service import Service
import pandas as pd
webdriver_service = Service("./chromedriver") #Your chromedriver path
driver = webdriver.Chrome(service=webdriver_service)
d = []
driver.get('https://www.zalando.es/release-calendar/zapatillas-mujer/')
driver.maximize_window()
time.sleep(5)
soup = BeautifulSoup(driver.page_source,"html.parser")
price= [x.get_text(strip=True) for x in soup.select('.Wqd6Qu + div')]
#print(price)
title= [x.get_text(strip=True) for x in soup.select('.Wqd6Qu + div + div + div')]
#print(title)
date = [x.get_text(strip=True).split(',')[0] for x in soup.select('.Wqd6Qu + div + div + div + div')]
#print(date)
hour = [x.get_text(strip=True).split(',')[1] for x in soup.select('.Wqd6Qu + div + div + div + div')]
#print(hour)
cols = ['title', 'price', 'date', 'hour']
df = pd.DataFrame(data=list(zip(title,price,date,hour)), columns=cols)
print(df)
输出:
title price date hour
0 WMNS DUNK LOW CZ 109,95 € 10 de noviembre de 2022 14:15
1 HYPERTURF ADVENTURE 139,95 € 11 de noviembre de 2022 14:00
2 W AIR MAX 95 ESS 189,95 € 11 de noviembre de 2022 14:00
3 CITY CLASSIC 119,95 € 11 de noviembre de 2022 14:00
4 CITY CLASSIC 119,95 € 11 de noviembre de 2022 14:00
5 WMNS AIR 1 MID 129,95 € 11 de noviembre de 2022 14:15
6 DUNK LOW NEXT NATURE 109,95 € 11 de noviembre de 2022 14:15
7 CROSS WOMEN 295,00 € 14 de noviembre de 2022 14:00
8 CROSS WOMEN 295,00 € 14 de noviembre de 2022 14:00
9 CROSS WOMEN 295,00 € 14 de noviembre de 2022 14:00
10 W DUNK HIGH 119,95 € 14 de noviembre de 2022 14:15
11 MT410 99,95 € 16 de noviembre de 2022 14:00
12 MT410 99,95 € 16 de noviembre de 2022 14:00
13 MT410 99,95 € 16 de noviembre de 2022 14:00
14 MT410 99,95 € 16 de noviembre de 2022 14:00
15 MT410 94,95 € 16 de noviembre de 2022 14:00
16 WL574 109,95 € 18 de noviembre de 2022 14:00
17 WS327 119,95 € 18 de noviembre de 2022 14:00