代码如下:
我想用它来分析
response = requests.request("GET", url, headers=headers, params=querystring)
print(response.text)
{"@type":"imdb.api.title.ratings","id":"/title/tt0944947/","title":"Game of Thrones","titleType":"tvSeries","year":2011,"canRate":true,"otherRanks":[{"id":"/chart/ratings/toptv","label":"Top 250 TV","rank":12,"rankType":"topTv"}],"rating":9.2,"ratingCount":1885115,"ratingsHistograms":{"Males Aged 18-29":{"aggregateRating":9.3,"demographic":"Males Aged 18-29","histogram":{"1":11186,"2":693,"3":801,"4":962,"5":2103,"6":3583,"7":9377,"8":22859,"9":52030,"10":174464},"totalRatings":278058},"IMDb Staff":{"aggregateRating":8.7,"demographic":"IMDb Staff","histogram":{"1":0,"2":0,"3":0,"4":0,"5":1,"6":3,"7":6,"8":19,"9":27,"10":17},"totalRatings":73}
坦率地说,您应该在任何Python教程或requests
的许多示例中找到它
fh = open("output.json")
fh.write(response.text)
fh.close()
或
with open("output.json") as fh:
fh.write(response.text)
至于熊猫,你可以试着读一下
df = pd.read_json("output.json")
或者您可以使用模块io
来读取它,而不需要在磁盘上保存
import io
fh = io.StringIO(response.text)
df = pd.read_json(fh)
但是pandas
保持数据作为表的行和列,但是你有嵌套的列表/字典,所以它可能需要一些工作来保持它在DataFrame
。
如果你只想从json
中获取一些数据,那么你可以使用response.json()