使用对象检测API对具有不同类数的模型进行微调



范围

我试图使用对象检测API来转移学习SSDMobileNetv3(小型(模型,但我的数据集只有8个类,而提供的模型是在COCO上预先训练的(90个类(。如果我保持模型的类的数量不变,我可以毫无问题地进行训练。

问题

更改pipeline.confignum_classes会产生赋值错误,因为层形状与检查点变量不匹配:

tensorflow.python.framework.errors_impl.InvalidArgumentError: 2 root error(s) found.
(0) Invalid argument: Assign requires shapes of both tensors to match. lhs shape= [1,1,288,27] rhs shape= [1,1,288,273]
[[{{node save/Assign_15}}]]
(1) Invalid argument: Assign requires shapes of both tensors to match. lhs shape= [1,1,288,27] rhs shape= [1,1,288,273]
[[{{node save/Assign_15}}]]
[[save/RestoreV2/_404]]

问题

  • 有没有办法改变班级数量,同时仍然进行迁移学习(比如只加载大小匹配的变量(?还是我必须在只有8节课的从头开始训练和90节课的微调之间应付
  • 是否有任何工具可以手动";修剪";预先训练的检查点变量

数据集:ITD数据集

型号:SSD MobileNetV3-小型(来自Model Zoo(

pipeline.config:

# SSDLite with Mobilenet v3 small feature extractor.
# Trained on COCO14, initialized from scratch.
# TPU-compatible.
# Users should configure the fine_tune_checkpoint field in the train config as
# well as the label_map_path and input_path fields in the train_input_reader and
# eval_input_reader. Search for "PATH_TO_BE_CONFIGURED" to find the fields that
# should be configured.
model {
ssd {
inplace_batchnorm_update: true
freeze_batchnorm: false
num_classes: 8
box_coder {
faster_rcnn_box_coder {
y_scale: 10.0
x_scale: 10.0
height_scale: 5.0
width_scale: 5.0
}
}
matcher {
argmax_matcher {
matched_threshold: 0.5
unmatched_threshold: 0.5
ignore_thresholds: false
negatives_lower_than_unmatched: true
force_match_for_each_row: true
use_matmul_gather: true
}
}
similarity_calculator {
iou_similarity {
}
}
encode_background_as_zeros: true
anchor_generator {
ssd_anchor_generator {
num_layers: 6
min_scale: 0.2
max_scale: 0.95
aspect_ratios: 1.0
aspect_ratios: 2.0
aspect_ratios: 0.5
aspect_ratios: 3.0
aspect_ratios: 0.3333
}
}
image_resizer {
fixed_shape_resizer {
height: 320
width: 320
}
}
box_predictor {
convolutional_box_predictor {
min_depth: 0
max_depth: 0
num_layers_before_predictor: 0
use_dropout: false
dropout_keep_probability: 0.8
kernel_size: 3
use_depthwise: true
box_code_size: 4
apply_sigmoid_to_scores: false
class_prediction_bias_init: -4.6
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
random_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
}
}
feature_extractor {
type: 'ssd_mobilenet_v3_small'
min_depth: 16
depth_multiplier: 1.0
use_depthwise: true
conv_hyperparams {
activation: RELU_6,
regularizer {
l2_regularizer {
weight: 0.00004
}
}
initializer {
truncated_normal_initializer {
stddev: 0.03
mean: 0.0
}
}
batch_norm {
train: true,
scale: true,
center: true,
decay: 0.97,
epsilon: 0.001,
}
}
override_base_feature_extractor_hyperparams: true
}
loss {
classification_loss {
weighted_sigmoid_focal {
alpha: 0.75,
gamma: 2.0
}
}
localization_loss {
weighted_smooth_l1 {
delta: 1.0
}
}
classification_weight: 1.0
localization_weight: 1.0
}
normalize_loss_by_num_matches: true
normalize_loc_loss_by_codesize: true
post_processing {
batch_non_max_suppression {
score_threshold: 1e-8
iou_threshold: 0.6
max_detections_per_class: 100
max_total_detections: 100
use_static_shapes: true
}
score_converter: SIGMOID
}
}
}
train_config: {
batch_size: 16 #512
sync_replicas: true
startup_delay_steps: 0
replicas_to_aggregate: 32
num_steps: 0
data_augmentation_options {
ssd_random_crop_pad_fixed_aspect_ratio {
}
}  
data_augmentation_options {
random_horizontal_flip {
}
}
optimizer {
momentum_optimizer: {
learning_rate: {
cosine_decay_learning_rate {
learning_rate_base: 0.4
total_steps: 800000
warmup_learning_rate: 0.13333
warmup_steps: 2000
}
}
momentum_optimizer_value: 0.9
}
use_moving_average: false
}
fine_tune_checkpoint: "./model/model.ckpt"
fine_tune_checkpoint_type: "detection"
fine_tune_checkpoint_version: V1
keep_checkpoint_every_n_hours: 2.0
max_number_of_boxes: 100
unpad_groundtruth_tensors: false
}
train_input_reader: {
tf_record_input_reader {
input_path: "./data/train.record"
}
label_map_path: "./annotations/label_map.pbtxt"
shuffle: true
}
eval_config: {
num_examples: 1296
}
eval_input_reader: {
tf_record_input_reader {
input_path: "./data/val.record"
}
label_map_path: "./annotations/label_map.pbtxt"
shuffle: true
num_readers: 1
}

是的,这主要是Tensorflow对象检测花园对模型进行微调的想法!您应该更改:

fine_tune_checkpoint_type = "detection"

至:

fine_tune_checkpoint_type = "fine_tune"

然后,当您调用objectdetection/model_main*.py时,您应该注意作为参数传递的modeldir是空的。通过这种方式,脚本将能够用90个类加载您在配置中指向的fine_tune_checkpoint,并且它将用保存的权重和8个类在空模型目录中创建一个新的检查点。之后,您甚至可以加载以前的自定义检查点,以防您的培训停止。

编辑:微调输入的参考检查此答案:https://github.com/tensorflow/models/issues/8892#issuecomment-680207038

相关内容

  • 没有找到相关文章

最新更新