我正在尝试创建一个具有tensorflow的变分自动编码器。根据keras网站,我已经完成了所有步骤(https://keras.io/guides/making_new_layers_and_models_via_subclassing/)不过我做了一些小改动。
annealing_weight = tf.keras.backend.variable(0.01)
test = VariationalAutoEncoder(annealing_weight,
[8, 8, 128],
input_shape=(None, 256, 256, 1))
test.compile('adam', loss=None)
test.summary()
test.train_on_batch(np.random.randn(32, 256, 256, 1),None)
我能够编译网络并获得摘要。一切似乎都很正常。然而,当我尝试对一批进行训练以查看网络是否正常工作时,我会收到以下错误消息。问题似乎出在错误函数上。
我希望有人能帮助我。谢谢!
WARNING:tensorflow:AutoGraph could not transform <bound method ConvolutionalBlock.call of <__main__.ConvolutionalBlock object at 0x000000001D5DC408>> and will run it as-is.
Please report this to the TensorFlow team. When filing the bug, set the verbosity to 10 (on Linux, `export AUTOGRAPH_VERBOSITY=10`) and attach the full output.
Cause: Unable to locate the source code of <bound method ConvolutionalBlock.call of <__main__.ConvolutionalBlock object at 0x000000001D5DC408>>. Note that functions defined in certain environments, like the interactive Python shell do not expose their source code. If that is the case, you should to define them in a .py source file. If you are certain the code is graph-compatible, wrap the call using @tf.autograph.do_not_convert. Original error: could not get source code
WARNING:tensorflow:Output output_1 missing from loss dictionary. We assume this was done on purpose. The fit and evaluate APIs will not be expecting any data to be passed to output_1.
Traceback (most recent call last):
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonframeworkops.py", line 1619, in _create_c_op
c_op = c_api.TF_FinishOperation(op_desc)
tensorflow.python.framework.errors_impl.InvalidArgumentError: Shapes must be equal rank, but are 1 and 0
From merging shape 1 with other shapes. for 'loss_1/AddN' (op: 'AddN') with input shapes: [?], [?], [], [], [], [], [], [], [], [], [], [], [], [].
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "<input>", line 10, in <module>
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining.py", line 1078, in train_on_batch
standalone=True)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining_v2_utils.py", line 416, in train_on_batch
extract_tensors_from_dataset=True)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining.py", line 2360, in _standardize_user_data
self._compile_from_inputs(all_inputs, y_input, x, y)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining.py", line 2618, in _compile_from_inputs
experimental_run_tf_function=self._experimental_run_tf_function)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythontrainingtrackingbase.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining.py", line 446, in compile
self._compile_weights_loss_and_weighted_metrics()
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythontrainingtrackingbase.py", line 457, in _method_wrapper
result = method(self, *args, **kwargs)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining.py", line 1592, in _compile_weights_loss_and_weighted_metrics
self.total_loss = self._prepare_total_loss(masks)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonkerasenginetraining.py", line 1701, in _prepare_total_loss
math_ops.add_n(custom_losses))
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonutildispatch.py", line 180, in wrapper
return target(*args, **kwargs)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonopsmath_ops.py", line 3053, in add_n
return gen_math_ops.add_n(inputs, name=name)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonopsgen_math_ops.py", line 420, in add_n
"AddN", inputs=inputs, name=name)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonframeworkop_def_library.py", line 742, in _apply_op_helper
attrs=attr_protos, op_def=op_def)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonframeworkfunc_graph.py", line 595, in _create_op_internal
compute_device)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonframeworkops.py", line 3322, in _create_op_internal
op_def=op_def)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonframeworkops.py", line 1786, in __init__
control_input_ops)
File "C:Usersuser.condaenvsThesislibsite-packagestensorflow_corepythonframeworkops.py", line 1622, in _create_c_op
raise ValueError(str(e))
ValueError: Shapes must be equal rank, but are 1 and 0
From merging shape 1 with other shapes. for 'loss_1/AddN' (op: 'AddN') with input shapes: [?], [?], [], [], [], [], [], [], [], [], [], [], [], [].
代码如下所示。
import numpy as np
import tensorflow as tf
from tensorflow.keras import layers as tfl
class ConvolutionalBlock(tfl.Layer):
def __init__(self, filters, name, deconv=False, **kwargs):
self.conv_layer = tfl.Conv2DTranspose if deconv else tfl.Conv2D
self.conv_layer = self.conv_layer(filters,
kernel_size=3,
padding='same',
kernel_initializer='he_normal',
kernel_regularizer=tf.keras.regularizers.l2(0.0001),
strides=2,
name='conv')
self.batch_norm = tfl.BatchNormalization(name='de_ennorm')
self.relu = tfl.ReLU(name='en_relu')# + str(index))
super(ConvolutionalBlock, self).__init__(name=name, **kwargs)
def call(self, inputs, **kwargs):
outputs = self.conv_layer(inputs)
outputs = self.batch_norm(outputs)
outputs = self.relu(outputs)
return outputs
class Sampling(tfl.Layer):
def __init__(self, **kwargs):
super(Sampling, self).__init__(name='reparameterization_trick', **kwargs)
def call(self, inputs, training=None, mask=None, **kwargs):
x_mean, x_variance = inputs
return x_mean + tf.keras.backend.exp(0.5 * x_variance) *
tf.keras.backend.random_normal(shape=(32, 128), mean=0., stddev=1.0)
class Encoder(tfl.Layer):
def __init__(self, **kwargs):
super(Encoder, self).__init__(name='Encoder', **kwargs)
self.convs = [
ConvolutionalBlock(8, 'conv1'),
ConvolutionalBlock(16, 'conv2'),
ConvolutionalBlock(32, 'conv3'),
ConvolutionalBlock(64, 'conv4'),
ConvolutionalBlock(128, 'conv5')
]
self.features = tfl.GlobalAveragePooling2D(name='globaverpool')
self.denserepresentation = tfl.Dense(128, activation='relu', name='Dense1')
self.x_mean = tfl.Dense(128, name='meanvector')
self.x_variance = tfl.Dense(128, name='variancevector')
self.sampling = Sampling()
def call(self, inputs, training=None, mask=None, **kwargs):
outputs = inputs
print(outputs)
for layer in self.convs:
outputs = layer(outputs)
print(outputs)
outputs = self.features(outputs)
print(outputs)
dense_output = self.denserepresentation(outputs)
print(dense_output)
x_mean = self.x_mean(dense_output)
x_variance = self.x_variance(dense_output)
output = self.sampling((x_mean,x_variance))
return output, x_mean, x_variance
class Decoder(tfl.Layer):
def __init__(self,
dense_reshape,
**kwargs):
super(Decoder, self).__init__(name='Decoder', **kwargs)
self.denserepresentation = tfl.Dense(np.prod(dense_reshape),
activation='relu',
kernel_regularizer=tf.keras.regularizers.l2(0.0001),
name='dense2')
self.reshaped = tfl.Reshape(dense_reshape,
name='reshape')
self.deconvs=[
ConvolutionalBlock(128, 'conv1', deconv=True),
ConvolutionalBlock(64, 'conv2', deconv=True),
ConvolutionalBlock(32, 'conv3', deconv=True),
ConvolutionalBlock(16, 'conv4', deconv=True),
ConvolutionalBlock(8, 'conv5', deconv=True)
]
self.output_layer = tfl.Conv2D(filters=1,
kernel_size=3,
activation='sigmoid', # check this
padding='same',
name='decodedconv',
kernel_regularizer=tf.keras.regularizers.l2(0.0001),
kernel_initializer='he_normal')
def call(self, inputs, training=None, mask=None):
outputs = inputs
outputs = self.denserepresentation(outputs)
outputs = self.reshaped(outputs)
for layer in self.deconvs:
outputs = layer(outputs)
outputs = self.output_layer(outputs)
return outputs
class VariationalAutoEncoder(tf.keras.Model):
def __init__(self,
annealing_weight,
dense_reshape,
input_shape,
**kwargs):
super(VariationalAutoEncoder, self).__init__(**kwargs)
self.annealing_weight = annealing_weight # for KL-loss
self.encoder = Encoder()
self.decoder = Decoder(dense_reshape)
self.build(input_shape)
def call(self, inputs, training=None, mask=None):
dense_output, x_mean, x_variance = self.encoder(inputs)
output = self.decoder(dense_output)
kl_loss = - self.annealing_weight * tf.reduce_mean(
x_variance - tf.keras.backend.square(x_mean)
- tf.keras.backend.exp(x_variance) + 1,
axis=-1)
self.add_loss(lambda: kl_loss)
return output
如错误消息所示,tf.math.add_n
函数的输入张量具有不同的秩。下面我重新创建了您的错误-
重现错误的代码-
%tensorflow_version 1.x
import tensorflow as tf
a = tf.constant([[3, 5], [4, 8]])
b = tf.constant([[[1, 6]], [[2, 9]]])
tf.math.add_n([a, b, a])
输出-
TensorFlow 1.x selected.
---------------------------------------------------------------------------
InvalidArgumentError Traceback (most recent call last)
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1606 try:
-> 1607 c_op = c_api.TF_FinishOperation(op_desc)
1608 except errors.InvalidArgumentError as e:
InvalidArgumentError: Shapes must be equal rank, but are 3 and 2
From merging shape 1 with other shapes. for 'AddN' (op: 'AddN') with input shapes: [2,2], [2,1,2], [2,2].
During handling of the above exception, another exception occurred:
ValueError Traceback (most recent call last)
9 frames
/tensorflow-1.15.2/python3.6/tensorflow_core/python/framework/ops.py in _create_c_op(graph, node_def, inputs, control_inputs)
1608 except errors.InvalidArgumentError as e:
1609 # Convert to ValueError for backwards compatibility.
-> 1610 raise ValueError(str(e))
1611
1612 return c_op
ValueError: Shapes must be equal rank, but are 3 and 2
From merging shape 1 with other shapes. for 'AddN' (op: 'AddN') with input shapes: [2,2], [2,1,2], [2,2].
注意-在tensorflow 2.x中错误消息的措辞不同
要修复此错误,请将相同秩的张量传递给tf.math.add_n
函数。
固定代码-
%tensorflow_version 1.x
import tensorflow as tf
a = tf.constant([[3, 5], [4, 8]])
b = tf.constant([[1, 6], [2, 9]])
tf.math.add_n([a, b, a])
输出-
<tf.Tensor 'AddN_1:0' shape=(2, 2) dtype=int32>