布尔简化-为什么(A+NOT(B.C)).(B+NOT(B.C))



这是方程式的答案,但我不明白为什么。请帮忙!

如果逐个应用布尔代数定律,则解决方案是一个直接结果:

  1. de Morgan定理:由OR连接在一起的两项的补码与由AND连接的两项补码相同,反之亦然(即NOT(A + B) = NOT(A) * NOT(B)NOT(A * B) = NOT(A) + NOT(B)(
  2. 交换律:用ANDOR连接两个独立项的顺序并不重要
  3. 补码定律:一个项与其补码与AND相连,分别等于0,而OR等于1(即A * NOT(A) = 0A + NOT(A) = 1(
  4. 废止定律:与AND0相连的项等于0,与OR1相连的项=1(即A * 0 = 0A + 1 = 1(
  5. 恒等定律:由AND1连接或由OR0连接的项等于其自身(即A * 1 = AA + 0 = A(

(还有更多,但这里不需要(

适用于你的学期:

(A + NOT(B*C))        * (B + NOT(B*C))        * (C + NOT(B*C)) 
[with 1.]   = (A + NOT(B) + NOT(C)) * (B + NOT(B) + NOT(C)) * (C + NOT(B) + NOT(C))
[with 2.]   = (A + NOT(B) + NOT(C)) * (B + NOT(B) + NOT(C)) * (C + NOT(C) + NOT(B))
[with 3.]   = (A + NOT(B) + NOT(C)) * (1          + NOT(C)) * (1          + NOT(B))      
[with 4.]   = (A + NOT(B) + NOT(C)) *  1                    *  1      
[with 5.]   = (A + NOT(B) + NOT(C))  
[with 1.]   = (A + NOT(B*C))                                 

相关内容

  • 没有找到相关文章

最新更新