我有一个字典,它已经完全预处理,准备输入到BERT模型中。然而,我正在努力把它变成一个tf.dataset。这是我的数据集的一个元素的样子:print(dataset[0])
{'input_ids': <tf.Tensor: shape=(128,), dtype=int64, numpy= array([ 101, 171, 112, 2537, 12293, 131, 11250, 118, 118,
2537, 12293, 131, 11250, 1110, 1126, 1237, 1778, 1326,
1687, 1111, 5957, 1398, 11737, 1118, 8129, 14399, 1105,
3230, 9426, 27277, 119, 1135, 1110, 1103, 1148, 1326,
1872, 4418, 1111, 1115, 1555, 117, 1105, 1103, 1148,
2537, 12293, 1326, 1290, 2537, 12293, 131, 9892, 4803,
1107, 1478, 119, 9617, 4986, 170, 4967, 1196, 1103,
1958, 1104, 1103, 1560, 2537, 12293, 1326, 1105, 2767,
1121, 1103, 21169, 1104, 1103, 18061, 1666, 2672, 2441,
117, 11250, 16001, 1103, 4245, 118, 118, 148, 1979,
1320, 1594, 1229, 1378, 1103, 3039, 1104, 1103, 6684,
11250, 119, 23886, 147, 119, 16218, 1105, 6619, 11679,
19644, 2145, 2867, 1112, 1437, 14627, 102, 171, 112,
1110, 1175, 170, 1207, 2851, 189, 14909, 1326, 1909,
112, 102])>, 'input_mask': <tf.Tensor: shape=(128,), dtype=int64, numpy= array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])>, 'segment_ids': <tf.Tensor: shape=(128,), dtype=int64, numpy= array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1])>, 'labels': <tf.Tensor: shape=(), dtype=int64, numpy=1>}
我所需要做的就是把它变成tf.data.Dataset()格式,然而,我似乎无法弄清楚如何使任何可用的from_tensor_slices, from_tensors, from_generator
功能与我所拥有的工作。
您可以通过使用pandas(或者您可以模拟to_dict
方法的输出)来实现这一点
dataset = tf.data.Dataset.from_tensor_slices(pd.DataFrame.from_dict(records).to_dict(orient="list"))
其中records
是字典列表。
我也在为此而挣扎,看到他们的tensorflow_datassets模块在字典中返回数据点(例如https://www.tensorflow.org/tutorials/images/segmentation)并且似乎没有官方功能存在从字典列表创建数据集。
我想出了这个解决方案:
input_ids = tf.data.Dataset.from_tensor_slices([d['input_ids'] for d in dataset])
input_masks = tf.data.Dataset.from_tensor_slices([d['input_mask'] for d in dataset])
segment_ids = tf.data.Dataset.from_tensor_slices([d['segment_ids'] for d in dataset])
labels = tf.data.Dataset.from_tensor_slices([d['labels'] for d in dataset])
ds = tf.data.Dataset.zip((input_ids, input_masks, segment_ids, labels))
ds = ds.map(lambda x, y, z, l: {"input_ids": x, "input_masks": y,
"segment_ids": z, "labels": l}
但是,它不是真正可伸缩的。