predict_proba返回神经网络中的错误
我看到了这个链接上的例子https://machinelearningmastery.com/how-to-make-classification-and-regression-predictions-for-deep-learning-models-in-keras/
https://faroit.com/keras-docs/1.0.0/models/sequential/the-sequential-model-api
我正在使用Tensorflow Version: 2.6.0
代码:
#creating the object (Initializing the ANN)
import tensorflow as tf
from tensorflow import keras
LAYERS = [
tf.keras.layers.Dense(50, activation="relu", input_shape=X_train.shape[1:]),
tf.keras.layers.LeakyReLU(),
tf.keras.layers.Dense(25, activation="relu"),
tf.keras.layers.Dense(10, activation="relu"),
tf.keras.layers.Dense(5, activation="relu"),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(1, activation='sigmoid')
]
LOSS = "binary_crossentropy"
OPTIMIZER = tf.keras.optimizers.Adam(learning_rate=1e-3)
model_cEXT = tf.keras.models.Sequential(LAYERS)
model_cEXT.compile(loss=LOSS , optimizer=OPTIMIZER, metrics=['accuracy'])
EPOCHS = 100
checkpoint_cb = tf.keras.callbacks.ModelCheckpoint("model_cEXT.h5", save_best_only=True)
early_stopping_cb = tf.keras.callbacks.EarlyStopping(patience=10, restore_best_weights=True)
tensorboard_cb = tf.keras.callbacks.TensorBoard(log_dir="logs")
CALLBACKS = [checkpoint_cb, early_stopping_cb, tensorboard_cb]
model_cEXT.fit(X_train, y_train['cEXT'], epochs = EPOCHS, validation_data=(X_test, y_test['cEXT']), callbacks = CALLBACKS)
model_cEXT.predict_proba(X_test)
错误:
---------------------------------------------------------------------------
AttributeError Traceback (most recent call last)
<ipython-input-72-8f06353cf345> in <module>()
----> 1 model_cEXT.predict_proba(X_test)
AttributeError: 'Sequential' object has no attribute 'predict_proba'
编辑:我需要像predict_proba这样的sklearn输出它是可视化所需要的
skplt.metrics.plot_precision_recall_curve(y_test['cEXT'].values, y_prob)
plt.title('Precision-Recall Curve - cEXT')
plt.show()
用下面的代码代替
predict_prob=model.predict([testa,testb])
predict_classes=np.argmax(predict_prob,axis=1)
新版本可能没有predict_proba方法,所以我使用。predict方法创建了自己的predict_proba方法
def predict_prob(number):
return [number[0],1-number[0]]
y_prob = np.array(list(map(predict_prob, model_cEXT.predict(X_test))))
y_prob