python pandas:尝试替换行中的值更新所有行



我有一个名为input.csv的简单CSV文件,如下所示:

name,money
Dan,200
Jimmy,xd
Alice,15
Deborah,30

我想写一个python脚本来消毒money列中的数据:每个包含非数字字符的值都需要替换为0

这是我到目前为止的尝试:

import pandas as pd

df = pd.read_csv(
"./input.csv",
sep = ","
)
# this line is the problem: it doesn't update on a row by row basis, it updates all rows
df['money'] = df['money'].replace(to_replace=r'[^0‐9]', value=0, regex=True)
df.to_csv("./output.csv", index = False)

问题是,当脚本运行时,因为其中一行存在invalud money valuexd,它将更改所有行的所有money value为0。

我希望它只改变第二个数据行(Jimmy)的货币值,该数据行具有无效值。

这是它在结尾给出的内容:

name,money
Dan,0
Jimmy,0
Alice,0
Deborah,0

但我需要它给的是:

name,money
Dan,200
Jimmy,0
Alice,15
Deborah,30

有什么问题吗?

您可以使用:

df['money'] = pd.to_numeric(df['money'], errors='coerce').fillna(0).astype(int)

以上假设所有有效值都是整数。如果您想要浮点值,可以不使用.astype(int)

另一种选择是在read_csv方法中使用转换函数。同样,这里假设的是整数。如果您期望浮动货币值,则可以使用float(x)代替int(x):

def convert_to_int(x):
try:
return int(x)
except ValueError:
return 0
df = pd.read_csv(
'input.csv', 
converters={'money': convert_to_int}
)

一些列表理解可以解决这个问题(考虑到"money"列中没有小数):

df.money = [x if type(x) == int else 0 for x in df.money]

如果你处理的是小数,那么像这样:

df.money = [x if (type(x) == int) or (type(x) == float) else 0 for x in df.money]

…将工作。只要知道熊猫会把所有的"钱"都换成熊猫就行了。

相关内容

  • 没有找到相关文章

最新更新