假设我们有如下的data.table:
x_dt <- data.table(sexn = c(1, 0, 0, 1, NA, 1, NA),
country = c("CHN", "JPN", "BGR", "AUT", " ", "TWN", " "),
age = c(35, NA, 40, NA, 70, 18, 36)
)
我试图创建一个变量asia_region,当国家%chin% c("CHN", "JPN", "KOR", "SGP", "TWN")
时其值为1,当国家不缺失时其值为0
,当国家缺失时其值为NA。
当缺少国家时,以下代码填充0。
result <- x_dt[, asia_region := ifelse(country %chin% c("CHN", "JPN", "KOR", "SGP", "TWN"),1 , 0)]
我们可以直接将as.integer
或+
的逻辑强制为二进制,然后通过在i
中指定逻辑条件,并将'asia_region'中相应元素的赋值(:=
)指定为NA
,将'country'为空(""
)的值更改为NA
x_dt[, asia_region := +(country %chin% c("CHN", "JPN", "KOR", "SGP", "TWN"))]
x_dt[trimws(country) == "", asia_region := NA_integer_]
与产出
> x_dt
sexn country age asia_region
1: 1 CHN 35 1
2: 0 JPN NA 1
3: 0 BGR 40 0
4: 1 AUT NA 0
5: NA 70 NA
6: 1 TWN 18 1
7: NA 36 NA
或者如果我们需要ifelse/fifelse
(if/else
不能工作,因为它不是矢量化的,即它期望输入表达式长度为1且不大于1)
x_dt[, asia_region := fifelse(trimws(country) == "", NA_integer_,
fifelse(country %chin% c("CHN", "JPN", "KOR", "SGP", "TWN"), 1, 0))]
dplyr()
解决方案如何?为了便于参考,我将这些国家做成一个矢量:
asia_countries <- c("CHN", "JPN", "KOR", "SGP", "TWN")
x_dt |>
dplyr::mutate(asia_region = ifelse(country %in% asia_countries, 1, 0)) |>
dplyr::mutate(asia_region = ifelse(country == " ", NA, asia_region))