我想对多组的两次治疗使用Wilcoxon双侧试验,即对几个样本位点中的每一个都有治疗前后(Conc(。我想按站点将数据集拆分成一个列表,然后应用测试,这样我就可以单独为每个站点提供输出,但是,我很难将其设置为可以重复的函数。
我有多个治疗点(Site(和两个治疗水平(Scenario(,结果得分(Conc(:
'data.frame': 7344 obs. of 6 variables:
$ Site : chr "A" "B" "C" "D" ...
$ Scenario : chr "1" "1" "1" "1" "2" "2" "2" "2" ...
$ Conc : num 4.7727 0.055 0.0552 0.055 0.055 ...
每个站点/场景组合中有多个Conc数据点(~60个(。我之所以选择Wilcoxon测试,主要是因为每个站点的治疗(场景(之间的样本数量略有不均衡。
当我将此代码用于整个数据集时,我得到了一个合理的结果:
t1 <- wilcox.test(Conc ~ Scenario, data = data.frame)
t1
但是,这段代码并没有对每个站点单独应用测试。
我看过我能找到的所有类似的例子(在SO和其他地方(,这是我能想到的最好的代码:
t2 = data.frame %>% group_by(Site) %>% do(tidy(wilcox.test(Conc~Scenario, data=data.frame), na.rm=TRUE, equal.var=FALSE))
t2
这段代码为我提供了每个站点的输出,但所有测试输出都是相同的,甚至p值:
# A tibble: 107 x 5
# Groups: Site [107]
Site statistic p.value method alternative
<chr> <dbl> <dbl> <chr> <chr>
1 A 6145702 0.690 Wilcoxon rank sum test with continuity correction two.sided
2 B 6145702 0.690 Wilcoxon rank sum test with continuity correction two.sided
3 C 6145702 0.690 Wilcoxon rank sum test with continuity correction two.sided
4 D 6145702 0.690 Wilcoxon rank sum test with continuity correction two.sided
5 E 6145702 0.690 Wilcoxon rank sum test with continuity correction two.sided
6 F 6145702 0.690 Wilcoxon rank sum test with continuity correction two.sided
有人看到我做错了什么吗?谢谢你的帮助
编辑于2020年8月21日,以更紧密地反映您的数据
以下是一个包含broom::tidy
结果的dplyr
和purrr
已编辑的解决方案
# 'data.frame': 5626 obs. of 3 variables:
# $ Site.Year: Factor w/ 3 levels "Baffle Creek at Newton Road_2018_2019",..: 1 1 1 1 1 1 1 1 1 1 ...
# $ Scenario : chr "FF_Total" "FF_Total" "FF_Total" "FF_Total" ...
# $ PAF : num 4.77 4.77 4.77 4.77 4.77
set.seed(2020)
Site.Year <- rep(c("Baffle Creek at Newton Road_2018_2019",
"Baffle Creek at Newton Road_2017_2018",
"Baffle Creek at Newton Road_2019_2020"), 50)
Scenario <- rep_len(c(rep("FF_Total", 4), rep("Not_FF_Total", 4)), 150)
PAF <- rnorm(150, mean = 2.5, sd = 1)
DailyPAF_long <- data.frame(Site.Year, Scenario, PAF)
DailyPAF_long$Site.Year <- factor(DailyPAF_long$Site.Year)
# str(DailyPAF_long)
# wilcox.test(PAF ~ Scenario, data = DailyPAF_long)
library(dplyr)
library(purrr)
DailyPAF_long %>%
base::split(Site.Year) %>%
purrr::map(~ wilcox.test(PAF ~ Scenario, data = .)) %>%
purrr::map_dfr(~ broom::tidy(.))
#> # A tibble: 3 x 4
#> statistic p.value method alternative
#> <dbl> <dbl> <chr> <chr>
#> 1 361 0.355 Wilcoxon rank sum exact test two.sided
#> 2 219 0.0723 Wilcoxon rank sum exact test two.sided
#> 3 380 0.195 Wilcoxon rank sum exact test two.sided