很抱歉,如果这个问题看起来很熟悉,我早些时候发布了一个更广泛的问题描述,但后来我删除了它,因为我在调查中取得了一些进展,可以缩小到更具体的问题。
上下文:
- 我正在使用
make_image_classifier
创建一个图像分类模型 - 我想使用C API来加载生成的模型和标签图像。我在这里遇到了数据输入问题
- 我可以使用label_image.py示例标记图像,因此模型很好,问题在于我使用C API
- 如果我正确理解
make_image_classifier
,它将生成一个需要4维输入的模型。我们处理的图像超出了宽度、高度和通道,我不知道这个第四维度是什么。这种缺乏理解可能是我问题的根源 - 我在代码中包含了一些错误处理,在调整大小后尝试从输入缓冲区复制时会遇到错误
问题:
Q1:为什么make_image_classifier
生成的模型需要4维输入?有高度、宽度和通道,但第四个是什么?
当我使用C API执行以下操作以使用我的图像输入运行模型时:
int inputDims[3] = {224, 224, 3};
tflStatus = TfLiteInterpreterResizeInputTensor(interpreter, 0, inputDims, 3);
我得到:
ERROR: tensorflow/lite/kernels/conv.cc:329 input->dims->size != 4 (3 != 4)
ERROR: Node number 2 (CONV_2D) failed to prepare.
所以我最终做了:
int inputDims[4] = {1, 224, 224, 3};
tflStatus = TfLiteInterpreterResizeInputTensor(interpreter, 0, inputDims, 4);
据我所知,第一个尺寸是批量大小,以防我想处理多个图像。这是正确的吗?
Q2:我是否应该使用调用TfLiteInterpreterResizeInputTensor
时使用的相同维度结构来构建数据输入?我得到了这个图像RGB输入缓冲区的错误:
// RGB range is 0-255. Scale it to 0-1.
for(int i = 0; i < imageSize; i++){
imageDataBuffer[i] = (float)pImage[i] / 255.0;
}
在构建模拟TfLiteInterpreterResizeInputTensor
输入维度的输入时,我也遇到了一个错误,但这似乎很愚蠢:
float imageData[1][224][224][3];
int j = 0;
for(int h = 0; h < 224; h++){
for(int w = 0; w < 224; w++){
imageData[0][h][w][0] = (float)pImage[j] * (1.0 / 255.0);
imageData[0][h][w][1] = (float)pImage[j+1] * (1.0 / 255.0);
imageData[0][h][w][2] = (float)pImage[j+2] * (1.0 / 255.0);
j = j + 3;
}
}
最后一个输入结构类似于Pythonlabel_image.py
中使用的输入结构:
input_data = np.expand_dims(img, axis=0)
Q3:我的输入缓冲区出了什么问题,导致TfLiteTensorCopyFromBuffer
返回错误代码?
谢谢!
完整代码:
#include "tensorflow/lite/c/c_api.h"
#include "tensorflow/lite/c/c_api_experimental.h"
#include "tensorflow/lite/c/common.h"
#include "tensorflow/lite/c/builtin_op_data.h"
#include "tensorflow/lite/c/ujpeg.h"
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
// Dispose of the model and interpreter objects.
int disposeTfLiteObjects(TfLiteModel* pModel, TfLiteInterpreter* pInterpreter)
{
if(pModel != NULL)
{
TfLiteModelDelete(pModel);
}
if(pInterpreter)
{
TfLiteInterpreterDelete(pInterpreter);
}
}
// The main function.
int main(void)
{
TfLiteStatus tflStatus;
// Create JPEG image object.
ujImage img = ujCreate();
// Decode the JPEG file.
ujDecodeFile(img, "image_224x224.jpeg");
// Check if decoding was successful.
if(ujIsValid(img) == 0){
return 1;
}
// There will always be 3 channels.
int channel = 3;
// Height will always be 224, no need for resizing.
int height = ujGetHeight(img);
// Width will always be 224, no need for resizing.
int width = ujGetWidth(img);
// The image size is channel * height * width.
int imageSize = ujGetImageSize(img);
// Fetch RGB data from the decoded JPEG image input file.
uint8_t* pImage = (uint8_t*)ujGetImage(img, NULL);
// The array that will collect the JPEG RGB values.
float imageDataBuffer[imageSize];
// RGB range is 0-255. Scale it to 0-1.
int j=0;
for(int i = 0; i < imageSize; i++){
imageDataBuffer[i] = (float)pImage[i] / 255.0;
}
// Load model.
TfLiteModel* model = TfLiteModelCreateFromFile("model.tflite");
// Create the interpreter.
TfLiteInterpreter* interpreter = TfLiteInterpreterCreate(model, NULL);
// Allocate tensors.
tflStatus = TfLiteInterpreterAllocateTensors(interpreter);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error allocating tensors.n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
int inputDims[4] = {1, 224, 224, 3};
tflStatus = TfLiteInterpreterResizeInputTensor(interpreter, 0, inputDims, 4);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error resizing tensor.n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
tflStatus = TfLiteInterpreterAllocateTensors(interpreter);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error allocating tensors after resize.n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// The input tensor.
TfLiteTensor* inputTensor = TfLiteInterpreterGetInputTensor(interpreter, 0);
// Copy the JPEG image data into into the input tensor.
tflStatus = TfLiteTensorCopyFromBuffer(inputTensor, imageDataBuffer, imageSize);
// Log and exit in case of error.
// FIXME: Error occurs here.
if(tflStatus != kTfLiteOk)
{
printf("Error copying input from buffer.n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// Invoke interpreter.
tflStatus = TfLiteInterpreterInvoke(interpreter);
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error invoking interpreter.n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// Extract the output tensor data.
const TfLiteTensor* outputTensor = TfLiteInterpreterGetOutputTensor(interpreter, 0);
// There are three possible labels. Size the output accordingly.
float output[3];
tflStatus = TfLiteTensorCopyToBuffer(outputTensor, output, 3 * sizeof(float));
// Log and exit in case of error.
if(tflStatus != kTfLiteOk)
{
printf("Error copying output to buffer.n");
disposeTfLiteObjects(model, interpreter);
return 1;
}
// Print out classification result.
printf("Confidences: %f, %f, %f.n", output[0], output[1], output[2]);
// Dispose of the TensorFlow objects.
disposeTfLiteObjects(model, interpreter);
// Dispoice of the image object.
ujFree(img);
return 0;
}
编辑#1:好的,所以在TfLiteTensorCopyFromBuffer
:内部
TfLiteStatus TfLiteTensorCopyFromBuffer(TfLiteTensor* tensor,
const void* input_data,
size_t input_data_size) {
if (tensor->bytes != input_data_size) {
return kTfLiteError;
}
memcpy(tensor->data.raw, input_data, input_data_size);
return kTfLiteOk;
}
我的input_data_size
值是150528(3个通道x 224像素高度x 224像素宽度(,但tensor->bytes
是602112(我假设是3个通道×448像素高度×224像素448?(。我不理解这种差异,尤其是因为我用{1, 224, 224, 3}
调用了TfLiteInterpreterResizeInputTensor
。
编辑#2:我相信我在这里找到了答案。一旦确认,将解决此问题。
我在EDIT#2上链接到的解决方案就是答案。最后,我只需要更换:
TfLiteTensorCopyFromBuffer(inputTensor, imageDataBuffer, imageSize);
带有:
TfLiteTensorCopyFromBuffer(inputTensor, imageDataBuffer, imageSize * sizeof(float));
干杯!