pyspark中的聚合Kolmogrov-Smirnov测试



有没有办法使用groupBy子句或某种聚合方法从pyspark中的spark.mllib库应用KS测试?例如,我有一个具有列IDRESULT的数据帧df,如下所示:

+-------+------+
|     ID|RESULT|
+-------+------+
|3648296|  2.73|
|3648296|  9.64|
|3648189|  0.03|
|3648189|  0.03|
|3648296|  2.51|
|3648189|  0.01|
|3648296|  1.75|
|3648296| 30.23|
|3648189|  0.02|
|3648189|  0.02|
|3648189|  0.02|
|3648296|  3.28|
|3648296| 32.55|
|3648296|  2.32|
|3648296| 34.58|
|3648296| 29.22|
|3648189|  0.02|
|3648296|  1.36|
|3648296|  1.64|
|3648296|  1.17|
+-------+------+

有两个IDs36482963648189,并且它们各自对应的RESULT值在几十万的数量级。是否可以应用groupBy函数,如:

from pyspark.mllib.stat import Statistics
normtest=df.groupBy('ID').Statistics.kolmogorovSmirnovTest(df.RESULT, "norm", 0, 1)

这样我就得到了一个输出数据帧,比如:

+-------+---------+----------+
|     ID|p-value  |statistic |
+-------+---------+----------+
|3648296|some val | some val |
|3648189|some val | some val |
+-------+---------+----------+

这可能吗?

这可以通过对数据进行装箱,然后对装箱的数据(即直方图(执行Kolmogorov-Smirnov检验来解决。它不会产生最大的距离,但如果你的有效分布是平滑的,那么结果应该足够接近。

通过对结果进行分段,可以确保一次只将有限数量的项目(存储桶的数量(加载到内存中。

首先,我们需要实现kstest的直方图版本:

import numpy as np
def hist_kstest(hist: np.array, bin_edges: np.array, cdf):
i = hist.cumsum()
n = i[-1]
bin_right_edges = bin_edges[1:]
cdf_vals = cdf(bin_right_edges)

statistic = np.max([
cdf_vals - (i-1) / n,
i / n - cdf_vals
])
pvalue = stats.distributions.kstwo.sf(statistic, n)
return statistic, pvalue

然后按如下方式使用:

from pyspark.sql import functions as F, types as T
from pyspark.ml.feature import QuantileDiscretizer
import pandas as pd
import numpy as np
from scipy import stats
# Choose the number of buckets. It depends on your memory
# availability and affects the accuracy of the test.
num_buckets = 1_000
# Choose the null hypothesis (H0)
h0_cdf = stats.norm(0, 1).cdf
# Bucket the result and get the buckets' edges
bucketizer = QuantileDiscretizer(
numBuckets=num_buckets, inputCol='RESULT', outputCol='result_bucket'
).setHandleInvalid("keep").fit(df)
buckets = np.array(bucketizer.getSplits())
def kstest(key, pdf: pd.DataFrame):
pdf.sort_values('result_bucket', inplace=True)
hist = pdf['count'].to_numpy()
# Some of the buckets might not appear in all the groups, so
# we filter buckets that are not available.
bin_edges = buckets[[0, *(pdf['result_bucket'].to_numpy() + 1)]]
statistic, pvalue = hist_kstest(hist, bin_edges, h0_cdf)
return pd.DataFrame([[*key, statistic, pvalue]])
df = bucketizer.transform(df).groupBy("ID", "result_bucket").agg(
F.count("*").alias("count")
).groupby("ID").applyInPandas(kstest, "ID long, statistic double, pvalue double")

相关内容

  • 没有找到相关文章

最新更新