如何在tensorflow_federated TFF中调优CIFAR100的超参数而不降低精度? &



我想测试这个教程https://www.tensorflow.org/federated/tutorials/tff_for_federated_learning_research_compression与CIFAR100数据集,但精度每一轮!

我的超参数调优是原因吗??

下面是我的代码:
cifar_train, cifar_test = tff.simulation.datasets.cifar100.load_data()
MAX_CLIENT_DATASET_SIZE = 418
CLIENT_EPOCHS_PER_ROUND = 1
CLIENT_BATCH_SIZE = 20
TEST_BATCH_SIZE = 500
def reshape_cifar_element(element):
return (tf.expand_dims(element['image'], axis=-1), element['label'])
def preprocess_train_dataset(dataset):
"""Preprocessing function for the EMNIST training dataset."""
return (dataset
# Shuffle according to the largest client dataset
.shuffle(buffer_size=MAX_CLIENT_DATASET_SIZE)
# Repeat to do multiple local epochs
.repeat(CLIENT_EPOCHS_PER_ROUND)
# Batch to a fixed client batch size
.batch(CLIENT_BATCH_SIZE, drop_remainder=False)
# Preprocessing step
.map(reshape_cifar_element))
cifar_train = cifar_train.preprocess(preprocess_train_dataset)
# defining a model 
def create_original_fedavg_cnn_model():
data_format = 'channels_last'
max_pool = functools.partial(
tf.keras.layers.MaxPooling2D,
pool_size=(2, 2),
padding='same',
data_format=data_format)
conv2d = functools.partial(
tf.keras.layers.Conv2D,
kernel_size=5,
padding='same',
data_format=data_format,
activation=tf.nn.relu)
model = tf.keras.models.Sequential([
tf.keras.layers.InputLayer(input_shape=(32, 32, 3)),
conv2d(filters=32),
max_pool(),
conv2d(filters=64),
max_pool(),
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(512, activation=tf.nn.relu),
tf.keras.layers.Dense(100, activation=None),
tf.keras.layers.Softmax(),
])
return model
input_spec = cifar_train.create_tf_dataset_for_client(
cifar_train.client_ids[0]).element_spec
def tff_model_fn():
keras_model = create_original_fedavg_cnn_model()
return tff.learning.from_keras_model(
keras_model=keras_model,
input_spec=input_spec,
loss=tf.keras.losses.SparseCategoricalCrossentropy(),
metrics=[tf.keras.metrics.SparseCategoricalAccuracy()])
# training the model 
federated_averaging = tff.learning.build_federated_averaging_process(
model_fn=tff_model_fn,
client_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=0.05),
server_optimizer_fn=lambda: tf.keras.optimizers.SGD(learning_rate=1.0))
# utility function
def format_size(size):
size = float(size)
for unit in ['bit','Kibit','Mibit','Gibit']:
if size < 1024.0:
return "{size:3.2f}{unit}".format(size=size, unit=unit)
size /= 1024.0
return "{size:.2f}{unit}".format(size=size, unit='TiB')
def set_sizing_environment():
sizing_factory = tff.framework.sizing_executor_factory()
context = tff.framework.ExecutionContext(executor_fn=sizing_factory)
tff.framework.set_default_context(context)
return sizing_factory
def train(federated_averaging_process, num_rounds, num_clients_per_round, summary_writer):
environment = set_sizing_environment()
# Initialize the Federated Averaging algorithm to get the initial server state.
state = federated_averaging_process.initialize()
with summary_writer.as_default():
for round_num in range(num_rounds):
# Sample the clients parcitipated in this round.
sampled_clients = np.random.choice(
cifar_train.client_ids,
size=num_clients_per_round,
replace=False)
# Create a list of `tf.Dataset` instances from the data of sampled clients.
sampled_train_data = [
cifar_train.create_tf_dataset_for_client(client)
for client in sampled_clients
]
state, metrics = federated_averaging_process.next(state, sampled_train_data)
size_info = environment.get_size_info()
broadcasted_bits = size_info.broadcast_bits[-1]
aggregated_bits = size_info.aggregate_bits[-1]
print('round {:2d}, metrics={}, broadcasted_bits={}, aggregated_bits={}'.format(round_num, metrics, format_size(broadcasted_bits), format_size(aggregated_bits)))
# Add metrics to Tensorboard.
for name, value in metrics['train'].items():
tf.summary.scalar(name, value, step=round_num)
# Add broadcasted and aggregated data size to Tensorboard.
tf.summary.scalar('cumulative_broadcasted_bits', broadcasted_bits, step=round_num)
tf.summary.scalar('cumulative_aggregated_bits', aggregated_bits, step=round_num)
summary_writer.flush()
# Clean the log directory to avoid conflicts.
try:
tf.io.gfile.rmtree('/tmp/logs/scalars')
except tf.errors.OpError as e:
pass  # Path doesn't exist
# Set up the log directory and writer for Tensorboard.
logdir = "/tmp/logs/scalars/original/"
summary_writer = tf.summary.create_file_writer(logdir)
train(federated_averaging_process=federated_averaging, num_rounds=10,
num_clients_per_round=100, summary_writer=summary_writer)

输出:

round  0, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0299), ('loss', 15.586388), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=6.56Gibit, aggregated_bits=6.56Gibit
round  1, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0046), ('loss', 16.042076), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=13.13Gibit, aggregated_bits=13.13Gibit
round  2, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0107), ('loss', 15.945647), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=19.69Gibit, aggregated_bits=19.69Gibit
round  3, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0104), ('loss', 15.950482), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=26.26Gibit, aggregated_bits=26.26Gibit
round  4, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0115), ('loss', 15.932754), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=32.82Gibit, aggregated_bits=32.82Gibit
round  5, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0111), ('loss', 15.9391985), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=39.39Gibit, aggregated_bits=39.39Gibit
round  6, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0112), ('loss', 15.937586), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=45.95Gibit, aggregated_bits=45.95Gibit
round  7, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.012), ('loss', 15.924692), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=52.52Gibit, aggregated_bits=52.52Gibit
round  8, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0105), ('loss', 15.948869), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=59.08Gibit, aggregated_bits=59.08Gibit
round  9, metrics=OrderedDict([('broadcast', ()), ('aggregation', OrderedDict([('mean_value', ()), ('mean_weight', ())])), ('train', OrderedDict([('sparse_categorical_accuracy', 0.0096), ('loss', 15.963377), ('num_examples', 10000), ('num_batches', 500)]))]), broadcasted_bits=65.64Gibit, aggregated_bits=65.64Gibit

输入结构如下:

OrderedDict([('coarse_label', TensorSpec(shape=(), dtype=tf.int64, name=None)), ('image', TensorSpec(shape=(32, 32, 3), dtype=tf.uint8, name=None)), ('label', TensorSpec(shape=(), dtype=tf.int64, name=None))])

我不知道我错在哪里!

  • 是否在create_original_fedavg_cnn_model()中的层中定义的超参数错误?还是在preprocess_train_dataset()中?

  • 如何为CIFAR100数据集调整相同教程的参数?

感谢您的帮助!谢谢。

有几点需要注意:

  1. 因为它似乎是训练(虽然不是很好),一些最显著的超参数将是优化器的学习率。您可能想要在那里尝试其他超参数,甚至其他优化器。

  2. 您使用的CNN模型非常小,可能只是在CIFAR-100上整体表现不佳。一个有用的方法是先在数据集上以集中的方式训练模型(作为一致性检查),然后再进行联邦训练。

  3. 关于如何初始化超参数设置的一个很好的经验法则是,采用在集中训练中工作良好的优化器/超参数(参见项目2),并将它们用作客户端优化器,同时保持服务器优化器为SGD,学习率为1。这可能不是最优的,但通常可以做得很好。

不幸的是,模型训练仍然是一门艺术,而不是一门科学,联合训练可能不同于集中训练。因此,可能需要进行一些试错。祝你好运。

相关内容

  • 没有找到相关文章

最新更新