r语言 - 如何在word文本文件的表中报告重复测量方差分析输出?



我想为重复测量方差分析导出以下结果的表:

这里是ANOVA检验已经实现的函数

fAddANOVA = function(data) data %>% 
ezANOVA(dv = .(value), wid = .(ID), within = .(COND)) %>% as_tibble()

这里是探索ANOVA统计的命令

aov_stats <- df_join %>% group_by(signals) %>% 
mutate(ANOVA = map(data, ~fAddANOVA(.x))) %>% 
dplyr::select(., -data) %>% 
unnest(ANOVA)
> aov_stats
# A tibble: 12 x 4
# Groups:   signals [12]
signals     ANOVA$Effect  $DFn  $DFd      $F      $p $`p<.05`    $ges `Mauchly's Test~    $W     $p $`p<.05` `Sphericity Cor~  $GGe $`p[GG]` $`p[GG]<.05`  $HFe $`p[HF]` $`p[HF]<.05`
<chr>       <chr>        <dbl> <dbl>   <dbl>   <dbl> <chr>      <dbl> <chr>            <dbl>  <dbl> <chr>    <chr>            <dbl>    <dbl> <chr>        <dbl>    <dbl> <chr>       
1 P3FCz       COND             2    48  0.0440 9.57e-1 ""       3.38e-4 COND             0.938 0.480  ""       COND             0.942  9.50e-1 ""           1.02   9.57e-1 ""          
2 P3Cz        COND             2    48  0.594  5.56e-1 ""       6.30e-3 COND             0.846 0.147  ""       COND             0.867  5.33e-1 ""           0.928  5.44e-1 ""          
3 P3Pz        COND             2    48  5.18   9.22e-3 "*"      4.28e-2 COND             0.989 0.885  ""       COND             0.990  9.46e-3 "*"          1.08   9.22e-3 "*"         
4 LPPearlyFCz COND             2    48  3.59   3.52e-2 "*"      2.40e-2 COND             0.997 0.965  ""       COND             0.997  3.54e-2 "*"          1.09   3.52e-2 "*"         
5 LPPearlyCz  COND             2    48  7.09   2.00e-3 "*"      6.87e-2 COND             0.949 0.549  ""       COND             0.952  2.40e-3 "*"          1.03   2.00e-3 "*"         
6 LPPearlyPz  COND             2    48 13.9    1.70e-5 "*"      1.14e-1 COND             0.948 0.544  ""       COND             0.951  2.53e-5 "*"          1.03   1.70e-5 "*"         
7 LPP1FCz     COND             2    48  4.56   1.54e-2 "*"      2.92e-2 COND             0.849 0.151  ""       COND             0.868  2.02e-2 "*"          0.930  1.78e-2 "*"         
8 LPP1Cz      COND             2    48  7.05   2.07e-3 "*"      6.37e-2 COND             0.823 0.107  ""       COND             0.850  3.65e-3 "*"          0.908  2.93e-3 "*"         
9 LPP1Pz      COND             2    48 13.3    2.52e-5 "*"      9.94e-2 COND             0.774 0.0522 ""       COND             0.815  1.07e-4 "*"          0.867  7.14e-5 "*"         
10 LPP2FCz     COND             2    48  0.286  7.53e-1 ""       2.84e-3 COND             0.734 0.0285 "*"      COND             0.790  7.01e-1 ""           0.836  7.14e-1 ""          
11 LPP2Cz      COND             2    48  1.05   3.59e-1 ""       1.22e-2 COND             0.945 0.520  ""       COND             0.948  3.56e-1 ""           1.03   3.59e-1 ""          
12 LPP2Pz      COND             2    48  2.64   8.15e-2 ""       3.15e-2 COND             0.904 0.314  ""       COND             0.913  8.71e-2 ""           0.984  8.25e-2 ""          
> 

我想问一下采用这两种可视化方法报告结果的建议

解决方案1:

一个word文档上的三个分割表,包含:

  1. ANOVA测量,从第一列到第八列;

  2. 马赫利试验统计量,从第9列到第12列如下图所示,因此包含这些统计量所涉及的信号的列也被报告;

  3. 球体度测试,从第13列到结束列,始终包括信号列;

解决方案2:

一个表

  1. 去掉冗余的(或COND)

  2. 及以上各结果列块(方差分析(3-8),Mauchly检验(10-12)和Sphericity检验(14-19)),分组超越线与ranges所指统计量的名称。

提前感谢您

如果我让

下面的数据集
> dput(head(df_join))
structure(list(signals = c("P3FCz", "P3Cz", "P3Pz", "LPPearlyFCz", 
"LPPearlyCz", "LPPearlyPz"), data = list(structure(list(ID = structure(c(1L, 
1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 
6L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 11L, 11L, 
11L, 12L, 12L, 12L, 13L, 13L, 13L, 14L, 14L, 14L, 15L, 15L, 15L, 
16L, 16L, 16L, 17L, 17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 20L, 
20L, 20L, 21L, 21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 
24L, 25L, 25L, 25L), .Label = c("01", "04", "06", "07", "08", 
"09", "10", "11", "12", "13", "15", "16", "17", "18", "19", "21", 
"22", "23", "25", "27", "28", "30", "44", "46", "49"), class = "factor"), 
GR = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), .Label = "RP", class = "factor"), SES = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "V", class = "factor"), 
COND = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L), .Label = c("NEG-CTR", "NEG-NOC", "NEU-NOC"
), class = "factor"), value = c(-11.6312151716924, -11.1438413285935, 
-3.99591470944713, -0.314155675382471, 0.238885648959708, 
5.03749946898385, -0.213621915029167, -2.96032491743069, 
-1.97168681693488, -2.83109425298642, 1.09291198163802, -6.692991645215, 
4.23849942428043, 2.9898889629932, 3.5510699900835, 9.57481668808606, 
5.4167795618285, 1.7067607715475, -6.13036076093477, -2.82955734597919, 
-2.50672211111696, 0.528517585832501, 8.16418133488309, 1.88777321897925, 
-7.73588468896919, -9.83058052401056, -6.97442700196932, 
1.27327945355082, 2.11962397764132, 0.524299677616254, -1.83310726842883, 
0.658810483381172, -0.261373488428192, 4.37524298634374, 
0.625555654900511, 3.19617639836154, 0.0405517582137798, 
-3.29357103412113, -0.381435057304614, -5.73445509910268, 
-6.1129152355645, -2.45744234877604, 2.95352732001065, 0.527721249096473, 
1.91803490989119, -3.46703346467546, -2.40438419043702, -5.35374408162217, 
-7.27028665849262, -7.1532211375959, -5.39955520296854, 2.65765002364624, 
0.372495441513391, 6.24433066412776, 1.85698518142405, -0.564454675803529, 
-0.068523080368053, -7.04782633579147, -4.52263283590558, 
-6.62134671432544, 4.56661945182626, 3.05859761335498, 2.02997952225347, 
-6.10523962206958, -0.521871236969702, -3.97851995684846, 
-2.61258020387919, -4.13974828699279, -3.9210032516844, -4.63162466544638, 
-4.36762718685405, -6.71005969834916, -4.22719611676328, 
-0.229916506217565, -5.69725200870146)), class = c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -75L)), structure(list(
ID = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 
4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 
9L, 9L, 10L, 10L, 10L, 11L, 11L, 11L, 12L, 12L, 12L, 13L, 
13L, 13L, 14L, 14L, 14L, 15L, 15L, 15L, 16L, 16L, 16L, 17L, 
17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 20L, 20L, 20L, 21L, 
21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 24L, 25L, 
25L, 25L), .Label = c("01", "04", "06", "07", "08", "09", 
"10", "11", "12", "13", "15", "16", "17", "18", "19", "21", 
"22", "23", "25", "27", "28", "30", "44", "46", "49"), class = "factor"), 
GR = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), .Label = "RP", class = "factor"), SES = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "V", class = "factor"), 
COND = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L), .Label = c("NEG-CTR", "NEG-NOC", "NEU-NOC"
), class = "factor"), value = c(-5.16524399006139, -5.53112490175437, 
0.621502123415388, 2.23100741241039, 3.96990710862955, 7.75899775608441, 
-1.30019374375434, -3.59899040898949, -1.92340529575071, 
2.19344184533265, 5.87900720863083, -5.92378937757888, 2.44958531767688, 
3.10043497883256, 1.65779442628225, 13.7118233181713, 6.86178446511352, 
5.31481098188172, -4.13240668697805, 0.162182285588285, 0.142083484505352, 
5.42592103255673, 14.5496375672716, 4.52018125654081, -2.40677805475299, 
-5.3832670295207, -1.55736964635117, 3.48359241788107, 4.23167123533126, 
2.00051785325202, 1.48755216347718, 2.37269462739372, 1.30346907198835, 
3.89476490634811, 1.87516303240986, 4.36353100770575, 1.9413417416824, 
-2.22114447555529, -0.015852062711641, -2.76146409940467, 
-3.51627712447581, 1.01799377568815, 1.74783962328435, 1.1303870721987, 
2.16398550183836, -3.31557794753334, -1.83920975041768, -6.06703163736936, 
-8.1566939611461, -9.23030396302541, -4.35545141573936, 0.906302081219897, 
0.45401759063429, 3.80236232314171, 4.0336657306528, 2.0185967445137, 
0.835589319243251, -4.6805488231028, -1.20746167339041, -5.50475999427345, 
4.96594373869991, 4.1349308440931, 3.00187233307059, -5.61465293602653, 
0.544596077279702, -5.20450410570445, -0.0325220589039272, 
-2.28038421035601, -2.01375702882255, -1.6547144697087, -0.619979893871085, 
-4.48258340054462, -1.42281778522059, 2.62315679073783, -4.13736508533355
)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, 
-75L)), structure(list(ID = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 
3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 
8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 11L, 11L, 11L, 12L, 12L, 12L, 
13L, 13L, 13L, 14L, 14L, 14L, 15L, 15L, 15L, 16L, 16L, 16L, 17L, 
17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 20L, 20L, 20L, 21L, 21L, 
21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 24L, 25L, 25L, 25L
), .Label = c("01", "04", "06", "07", "08", "09", "10", "11", 
"12", "13", "15", "16", "17", "18", "19", "21", "22", "23", "25", 
"27", "28", "30", "44", "46", "49"), class = "factor"), GR = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "RP", class = "factor"), 
SES = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), .Label = "V", class = "factor"), COND = structure(c(1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("NEG-CTR", 
"NEG-NOC", "NEU-NOC"), class = "factor"), value = c(11.8802266972569, 
12.1053426662461, 12.955441582096, 15.0981004360619, 15.4046229884164, 
16.671036999147, 3.13771453335467, -0.0892565159000666, 2.15365554736525, 
13.6778924406572, 14.3862738306396, 6.86762877785576, 7.47946451329025, 
8.93405130318593, 8.45962311067909, 23.4166601996042, 15.1868092142896, 
9.97183712753913, 6.267521071803, 10.142198458411, 10.6320358418368, 
12.9998037913548, 20.7052065690674, 11.8852179570666, 15.7899796085713, 
7.50729833890206, 14.3076172484818, 9.93797956768228, 10.7693238464384, 
5.04681800218272, 5.16656503460515, 7.87875085817396, 2.29899409536951, 
10.0135486953849, 5.48278706243332, 7.81908431468528, 8.64382513728869, 
3.35777109534179, 3.47474629234488, 4.35678644331281, 3.47085321062162, 
6.56231512354717, 4.93825547529124, 7.33985613752315, 6.81966900599588, 
6.54487921689425, 7.25872117706077, 1.10301223694429, -0.856423579793706, 
-0.887835692028378, -0.931653372049331, 5.6617683754256, 
2.29939831067085, 5.1554825066748, 6.59026080217083, 3.0741733363644, 
1.80359068950898, 1.63892755704177, 3.857933716935, 0.769316188513939, 
10.7031907391191, 9.53278894637555, 8.01071628743378, 6.04891324234645, 
11.1964453850602, 3.46633322373091, 14.4393884282958, 11.2339563353478, 
7.74933708914689, 7.1182095475238, 7.39260082121406, 0.627435381320771, 
9.15473202689768, 13.6559037433263, 7.14786907480758)), class = c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -75L)), structure(list(
ID = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 
4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 
9L, 9L, 10L, 10L, 10L, 11L, 11L, 11L, 12L, 12L, 12L, 13L, 
13L, 13L, 14L, 14L, 14L, 15L, 15L, 15L, 16L, 16L, 16L, 17L, 
17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 20L, 20L, 20L, 21L, 
21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 24L, 25L, 
25L, 25L), .Label = c("01", "04", "06", "07", "08", "09", 
"10", "11", "12", "13", "15", "16", "17", "18", "19", "21", 
"22", "23", "25", "27", "28", "30", "44", "46", "49"), class = "factor"), 
GR = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), .Label = "RP", class = "factor"), SES = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "V", class = "factor"), 
COND = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L), .Label = c("NEG-CTR", "NEG-NOC", "NEU-NOC"
), class = "factor"), value = c(-11.7785042972793, -9.14927207125904, 
-7.58190508537766, -4.01515836011381, -6.60165385653499, 
-2.02861964460179, 4.46729570509601, 2.54036572774646, 2.22923889930115, 
-0.883620011106743, -2.63569087592267, -2.0629672230873, 
1.14544537612393, 2.08056674659401, 0.0422658298956365, 13.2986259796748, 
5.06669915366333, 3.93467692474742, 0.0229069420708053, 4.31923128857779, 
0.237726051904304, 1.89972383690448, 3.2371880079134, 0.318100791495115, 
-8.08292381883298, -5.73174008540523, -15.7998485301436, 
1.75469999857951, 0.677370118816266, -1.8397955509895, 2.55445787016256, 
-0.380810453692585, 0.62462329496673, 2.61316333850434, 2.68202480583985, 
1.76690658846479, 0.148635887703097, -0.958853757041888, 
-3.17305964093897, -7.82526758429289, -6.58557573679886, 
-4.39207076049089, 2.36752476749952, 0.594715760553033, -0.29794568443312, 
-4.5365387390683, 0.196832250811775, -2.70852853745588, 0.498995124872827, 
0.165171574219401, 0.269498974991661, 0.901948386281446, 
-2.45955661653299, 1.63525170542944, 0.155897732673534, 1.8491735212703, 
-0.856727109535223, -1.16182571974245, 1.07658425742917, 
-2.21433585407388, 4.3385479368043, 4.40588599635354, 0.127710423625772, 
-6.26956613362656, -1.17658595005389, -7.25886366924741, 
-0.888293709383838, -2.14177059335841, -2.42141595261389, 
-2.958120275175, -5.1274001953303, -5.32347488769128, -4.41290818553442, 
-1.21404719262173, -4.23649270310915)), class = c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -75L)), structure(list(
ID = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 3L, 3L, 3L, 4L, 
4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 8L, 8L, 9L, 
9L, 9L, 10L, 10L, 10L, 11L, 11L, 11L, 12L, 12L, 12L, 13L, 
13L, 13L, 14L, 14L, 14L, 15L, 15L, 15L, 16L, 16L, 16L, 17L, 
17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 20L, 20L, 20L, 21L, 
21L, 21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 24L, 25L, 
25L, 25L), .Label = c("01", "04", "06", "07", "08", "09", 
"10", "11", "12", "13", "15", "16", "17", "18", "19", "21", 
"22", "23", "25", "27", "28", "30", "44", "46", "49"), class = "factor"), 
GR = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), .Label = "RP", class = "factor"), SES = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "V", class = "factor"), 
COND = structure(c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L), .Label = c("NEG-CTR", "NEG-NOC", "NEU-NOC"
), class = "factor"), value = c(-5.96429031525769, -5.10918437158799, 
-2.81732229625975, -1.43557366487622, -3.14872157912645, 
0.160393685024631, 3.52155765271648, 2.10437989449921, 2.70693992810407, 
5.49897156207812, 5.81171180245335, -1.37301251388987, -0.434363848460157, 
2.87987510596148, -1.27152670283348, 17.2093269365993, 7.79412746755931, 
8.11964589961276, 4.95253363860044, 9.50695673265293, 4.15235381401148, 
6.1294488368639, 8.01447499455337, 0.783414018677801, -1.24197194087055, 
-0.487178595894761, -9.79031812534203, 4.22150266269492, 
4.20139847550095, 0.208005397351335, 4.19096721581768, 0.815283302847055, 
1.48137456347872, 2.0809543999959, 4.35199943309111, 2.84860039832237, 
3.05879540677983, 2.11976068962167, -0.269002712326028, -2.77155065610474, 
-2.59002218694999, 0.17928456999128, 2.24515223348079, 1.88805943988563, 
-0.0920286086411814, -2.00968595029144, 2.59427260100332, 
-1.27622011197768, 0.588399071755827, -1.43982473126936, 
1.96978732491278, -0.338674980283045, -1.86484698930706, 
-0.0154791822607025, 2.55036185373462, 4.42520405730058, 
-0.599156247027551, 1.60091251589958, 4.7367320574401, -0.192490723623988, 
4.8452288234686, 5.71745745981867, 1.02554478706585, -4.5951256708181, 
1.1704842909792, -7.42770276334892, 3.15655538248828, -0.639830772856786, 
-0.345116641695513, -0.0391030568720636, -2.61585906518491, 
-2.71685194532693, -1.7348388034111, 1.00287124847525, -2.4844653851482
)), class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA, 
-75L)), structure(list(ID = structure(c(1L, 1L, 1L, 2L, 2L, 2L, 
3L, 3L, 3L, 4L, 4L, 4L, 5L, 5L, 5L, 6L, 6L, 6L, 7L, 7L, 7L, 8L, 
8L, 8L, 9L, 9L, 9L, 10L, 10L, 10L, 11L, 11L, 11L, 12L, 12L, 12L, 
13L, 13L, 13L, 14L, 14L, 14L, 15L, 15L, 15L, 16L, 16L, 16L, 17L, 
17L, 17L, 18L, 18L, 18L, 19L, 19L, 19L, 20L, 20L, 20L, 21L, 21L, 
21L, 22L, 22L, 22L, 23L, 23L, 23L, 24L, 24L, 24L, 25L, 25L, 25L
), .Label = c("01", "04", "06", "07", "08", "09", "10", "11", 
"12", "13", "15", "16", "17", "18", "19", "21", "22", "23", "25", 
"27", "28", "30", "44", "46", "49"), class = "factor"), GR = structure(c(1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L), .Label = "RP", class = "factor"), 
SES = structure(c(1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 
1L, 1L, 1L, 1L, 1L), .Label = "V", class = "factor"), COND = structure(c(1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 
2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), .Label = c("NEG-CTR", 
"NEG-NOC", "NEU-NOC"), class = "factor"), value = c(8.23981597718437, 
9.51261484648731, 9.42367409925817, 5.06332653216481, 5.02619159395405, 
9.07903916629231, 7.56089165217984, 5.49719893790597, 4.91476855238182, 
13.0320953572069, 10.8414516494484, 5.86927622259489, 3.25309970442897, 
4.6847880297099, 2.71096740085175, 25.567439566524, 16.3241813617706, 
13.0990192799703, 11.9200281736866, 14.6901305277101, 9.67397418905514, 
10.2974302220899, 12.0768070828642, 5.9401530589224, 12.4817579327688, 
12.419526465857, 1.00612108990875, 9.63063375751153, 10.5631237176538, 
3.08031473770521, 3.35694102903017, 4.28046277054405, -0.133592200169464, 
6.9103658689166, 7.64737651416791, 6.75669517393108, 8.5369185279747, 
7.08645126073423, 4.47409706618326, 4.39617687043259, 3.27924738047746, 
6.06169418872804, 5.34939694712468, 5.58288092654703, 4.85729686493463, 
7.38032829587839, 11.7259526759912, 4.95764559864061, 6.24066579989613, 
3.49843659402445, 4.07498375647916, 3.55732294589389, 1.33918111568512, 
0.956782967443242, 2.32002496709926, 3.15289777246607, -0.832211906889126, 
6.39254974438057, 7.0533787627062, 2.97245026797807, 6.23573445580928, 
7.6052386193207, 2.98791225155534, 3.10850022259445, 8.12060882554471, 
-0.00459651443883508, 13.5899217198075, 9.93070913311253, 
8.10285456644801, 5.04464304009428, 2.02262615478956, 1.0510618938653, 
5.62233873107127, 10.1193593084848, 5.87476640145049)), class = c("tbl_df", 
"tbl", "data.frame"), row.names = c(NA, -75L)))), class = c("grouped_df", 
"tbl_df", "tbl", "data.frame"), row.names = c(NA, -6L), groups = structure(list(
signals = c("LPPearlyCz", "LPPearlyFCz", "LPPearlyPz", "P3Cz", 
"P3FCz", "P3Pz"), .rows = structure(list(5L, 4L, 6L, 2L, 
1L, 3L), ptype = integer(0), class = c("vctrs_list_of", 
"vctrs_vctr", "list"))), class = c("tbl_df", "tbl", "data.frame"
), row.names = c(NA, -6L), .drop = TRUE))
> 

对于方案一:

### Solution 1
library(officer)
library(flextable)
tab_1 <- aov_stats %>% select(signals, ANOVA) %>% as.data.frame()
tab_1 <- flextable(cbind(tab_1[, 1], tab_1[, 2]) %>% rename(signals = `tab_1[, 1]`))
tab_1 <- set_caption(tab_1, "1. ANOVA")
tab_2 <- aov_stats %>% select(signals, `Mauchly's Test for Sphericity`) %>% as.data.frame()
tab_2 <- flextable(cbind(tab_2[, 1], tab_2[, 2]) %>% rename(signals = `tab_2[, 1]`))
tab_2 <- set_caption(tab_2, "2. Mauchly's Test for Sphericity")
tab_3 <- aov_stats %>% select(signals, `Sphericity Corrections`) %>% as.data.frame()
tab_3 <- flextable(cbind(tab_3[, 1], tab_3[, 2]) %>% rename(signals = `tab_3[, 1]`))
tab_3 <- set_caption(tab_2, "3. Sphericity Corrections")
word_export <- read_docx()
body_add_flextable(word_export, tab_1, align = "left", split = FALSE)
body_add_par(word_export, value = "")
body_add_flextable(word_export, tab_2, align = "left", split = FALSE)
body_add_par(word_export, value = "")
body_add_flextable(word_export, tab_3, align = "left", split = FALSE)
print(word_export, 'ANOVA.docx')

编辑:解决方案2:

### Solution 2
library(flextable)
tab <- aov_stats %>% as.data.frame()
cols <- colnames(cbind(tab[, 1], tab[, 2], tab[, 3], tab[, 4]))[-c(9,13)]
cols <- replace(cols, cols == "tab[, 1]", "signals")
tab <- flextable(cbind(tab[, 1], tab[, 2], tab[, 3], tab[, 4]) %>% setNames(1:19) %>% select(-c(9, 13)))
tab <- delete_part(tab, part = "header")
tab <- add_header_row(tab, values = cols, colwidths = rep(1, 17))
tab <- add_header_row(tab, values = c("", "ANOVA", "Mauchly's Test for Sphericity.", "Sphericity Corrections."), colwidths = c(2, 6, 3, 6))
tab <- theme_box(tab)

相关内容

  • 没有找到相关文章

最新更新