如何最小化插值函数?



我在2D表面上插入了一个离散函数,类似于下面代码中的示例,现在我想使用scipy.interpolate.griddata最小化这个函数?有什么想法或解决方案吗?

谢谢你的帮助。

import numpy as np
from scipy.interpolate import griddata
import matplotlib.pyplot as plt
def func(x, y):
return x*(1-x)*np.cos(4*np.pi*x) * np.sin(4*np.pi*y**2)**2
grid_x, grid_y = np.mgrid[0:1:100j, 0:1:200j]
points = np.random.rand(1000, 2)
values = func(points[:,0], points[:,1])
grid_z0 = griddata(points, values, (grid_x, grid_y), method='cubic')
plt.subplot(221)
plt.imshow(func(grid_x, grid_y).T, extent=(0,1,0,1), origin='lower')
plt.plot(points[:,0], points[:,1], 'k.', ms=1)
plt.title('Original')
plt.subplot(222)
plt.imshow(grid_z0.T, extent=(0,1,0,1), origin='lower')
plt.title('cubic')
plt.gcf().set_size_inches(6, 6)
plt.show()

griddata返回一个数组,因此您可以使用numpy.argmin从字面上找到该数组中最小数字的索引-不需要使用scipy.optimize进行任何复杂的优化,因为没有函数要优化-您只有那个数字数组。

相关内容

  • 没有找到相关文章

最新更新