我打包了(使用Pyinstaller(极简主义Yolo github repo的一个小变体,在这里,打包是使用Pyinstaller完成的,以使用Flask作为服务器运行对象检测。
因此,在尝试运行服务器时,它只有在从Anaconda Prompt(我在这里编写了pyinstaller命令(运行时才能工作,除此之外,还会出现以下错误。
从(exe,Cmd,PowerShell(运行时出现错误i Get为:
Traceback (most recent call last):
File "flaskapp.py", line 2446, in wsgi_app
File "flaskapp.py", line 1951, in full_dispatch_request
File "flaskapp.py", line 1820, in handle_user_exception
File "flask_compat.py", line 39, in reraise
File "flaskapp.py", line 1949, in full_dispatch_request
File "flaskapp.py", line 1935, in dispatch_request
File "FlaskServerV2.py", line 53, in Hello
File "torchnnmodulesmodule.py", line 532, in __call__
File "models.py", line 259, in forward
File "torchnnmodulesmodule.py", line 532, in __call__
File "models.py", line 177, in forward
RuntimeError: error in LoadLibraryA
127.0.0.1 - - [19/Nov/2020 10:28:53] "GET /detect HTTP/1.1" 500 -
但是在conda中运行时,代码运行良好。所以我怀疑这是PyTorch依赖性的问题。
当前代码:
from __future__ import division
from flask import Flask, Response, jsonify
app = Flask(__name__)
from models import *
from utils.utils import *
from utils.datasets import *
import os
import sys
import time
import datetime
import argparse
from PIL import Image
import torch
from torch.utils.data import DataLoader
from torchvision import datasets
from torch.autograd import Variable
import matplotlib.pyplot as plt
import matplotlib.patches as patches
from matplotlib.ticker import NullLocator
import cv2
import time
import json
@app.route('/CheckIfRunning')
def CheckIfRunning():
return '1'
@app.route('/detect')
def Hello():
global device
global model
global classes
global colors
global Tensor
global a
img=cv2.imread("temp.jpg")
PILimg = np.array(Image.fromarray(cv2.cvtColor(img,cv2.COLOR_BGR2RGB)))
imgTensor = transforms.ToTensor()(PILimg)
imgTensor, _ = pad_to_square(imgTensor, 0)
imgTensor = resize(imgTensor, 416)
#add the batch size
imgTensor = imgTensor.unsqueeze(0)
imgTensor = Variable(imgTensor.type(Tensor))
with torch.no_grad():
detections = model(imgTensor)
detections = non_max_suppression(detections,0.8, 0.4)
a.clear()
Return={}
ReturnCounter=0
if detections is not None:
a.extend(detections)
b=len(a)
if len(a) :
for detections in a:
if detections is not None:
detections = rescale_boxes(detections, 416, PILimg.shape[:2])
unique_labels = detections[:, -1].cpu().unique()
n_cls_preds = len(unique_labels)
for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections:
box_w = x2 - x1
box_h = y2 - y1
color = [int(c) for c in colors[int(cls_pred)]]
img = cv2.rectangle(img, (x1, y1 + box_h), (x2, y1), color, 2)
cv2.putText(img, classes[int(cls_pred)], (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
cv2.putText(img, str("%.2f" % float(conf)), (x2, y2 - box_h), cv2.FONT_HERSHEY_SIMPLEX, 0.5,color, 2)
Return[ReturnCounter]= [x1.item(),y1.item(),x2.item(),y2.item(),conf.item(),cls_conf.item(),classes[int(cls_pred)]]
ReturnCounter+=1
cv2.imwrite("Temp2.jpg",img)
return Return
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
# Set up model
model = Darknet("config/yolov3.cfg", img_size=416).to(device)
model.load_darknet_weights("weights/yolov3.weights")
model.eval() # Set in evaluation mode
classes = load_classes("data/coco.names") # Extracts class labels from file
colors = np.random.randint(0, 255, size=(len(classes), 3), dtype="uint8")
Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor
a=[]
app.run(threaded=True)
好吧,原来这是pyinstaller的问题。
如果Pytorch是使用Conda安装的,它需要CUDANN,并且它无法与之一起工作(即没有该环境(
如果你想让它在任何地方都能工作,Pytorch必须使用pip安装。
作为参考,https://github.com/pyinstaller/pyinstaller/issues/2666#issuecomment-508013383