Scala从整数列和字符串列创建新的Map列



问题陈述:

我有一个包含四列的数据框:service (String), show (String), country_1 (Integer), &country_2(整数)。我的目标是生成一个仅由两列组成的数据框架:service (String) &

(Map[Integer, List[String]]),其中映射可以包含像这样的每个流媒体服务的键值对的多个记录:

{
"34521": ["The Crown", "Bridgerton", "The Queen's Gambit"],
"49678": ["The Crown", "Bridgerton", "The Queen's Gambit"]
}

需要注意的一点是,将来可以添加更多的国家,例如在输入数据框中再添加一些列,如"country3 ", &;country_4"等。解决方案代码的目标也希望能够解释这些事情,而不仅仅是硬编码所选择的列,就像我在下面的尝试解决方案中所做的那样,如果这有意义的话。

输入Dataframe:

模式:

root
|-- service: string (nullable = true)
|-- show: string (nullable = true)
|-- country_1: integer (nullable = true)
|-- country_2: integer (nullable = true)

Dataframe:

service     |      show        |   country_1   |   country_2
Netflix      The Crown               34521           49678
Netflix      Bridgerton              34521           49678
Netflix      The Queen's Gambit      34521           49678
Peacock      The Office              34521           49678
Disney+      WandaVision             34521           49678 
Disney+      Marvel's 616            34521           49678
Disney+      The Mandalorian         34521           49678
Apple TV     Ted Lasso               34521           49678
Apple TV     The Morning Show        34521           49678

输出Dataframe:

模式:

root
|-- service: string (nullable = true)
|-- information: map (nullable = false)
|    |-- key: integer
|    |-- value: array (valueContainsNull = true)
|    |    |-- element: string (containsNull = true)

Dataframe:

service    |  information          
Netflix    [34521 -> [The Crown, Bridgerton, The Queen’s Gambit], 49678 -> [The Crown, Bridgerton, The Queen’s Gambit]] 
Peacock    [34521 -> [The Office], 49678 -> [The Office]]
Disney+    [34521 -> [WandaVision, Marvel’s 616, The Mandalorian], 49678 -> [WandaVision, Marvel’s 616, The Mandalorian]]
Apple TV   [34521 -> [Ted Lasso, The Morning Show], 49678 -> [Ted Lasso, The Morning Show]]

我已经尝试过了

虽然我已经通过粘贴的代码片段成功地生成了我想要的输出,但我不想依赖于使用非常基本的sql类型命令,因为我认为对于大型数据集的快速计算来说,这并不总是最佳的,此外,我不想依赖于在映射时按确切名称手动选择国家列的方法,因为这总是会发生变化,因为以后可以添加更多的国家列。

是否有更好的方法来做到这一点,利用udfs, foldLeft等类型的代码或其他任何有助于优化,也有助于代码更简洁,而不是混乱?

val df = spark.read.parquet("filepath/*.parquet") 
val temp = df.groupBy("service", "country_1", "country_2").agg(collect_list("show").alias("show"))
val service_information = grouped.withColumn("information", map(lit($"country_1"), $"show", lit($"country_2"), $"show")).drop("country_1", "country_2", "show")

按国家数据"规格";注释部分中描述的(即国家代码将在任何给定的country_X列的所有行中相同且非空),您的代码可以推广到处理任意多个国家列:

val df = Seq(
("Netflix",     "The Crown",             34521,    49678),
("Netflix",     "Bridgerton",            34521,    49678),
("Netflix",     "The Queen's Gambit",    34521,    49678),
("Peacock",     "The Office",            34521,    49678),
("Disney+",     "WandaVision",           34521,    49678),
("Disney+",     "Marvel's 616",          34521,    49678),
("Disney+",     "The Mandalorian",       34521,    49678),
("Apple TV",    "Ted Lasso",             34521,    49678),
("Apple TV",    "The Morning Show",      34521,    49678)
).toDF("service", "show", "country_1", "country_2")
val countryCols = df.columns.filter(_.startsWith("country_")).toList
val grouped = df.groupBy("service", countryCols: _*).agg(collect_list("show").as("shows"))
val service_information = grouped.withColumn(
"information",
map( countryCols.flatMap{ c => col(c) :: col("shows") :: Nil }: _* )
).drop("shows" :: countryCols: _*)
service_information.show(false)
// +--------+--------------------------------------------------------------------------------------------------------------+
// |service |information                                                                                                   |
// +--------+--------------------------------------------------------------------------------------------------------------+
// |Disney+ |[34521 -> [WandaVision, Marvel's 616, The Mandalorian], 49678 -> [WandaVision, Marvel's 616, The Mandalorian]]|
// |Peacock |[34521 -> [The Office], 49678 -> [The Office]]                                                                |
// |Netflix |[34521 -> [The Crown, Bridgerton, The Queen's Gambit], 49678 -> [The Crown, Bridgerton, The Queen's Gambit]]  |
// |Apple TV|[34521 -> [Ted Lasso, The Morning Show], 49678 -> [Ted Lasso, The Morning Show]]                              |
// +--------+--------------------------------------------------------------------------------------------------------------+

请注意所描述的国家"规格";将强制要求所有show与同一国家名单相关联。例如,如果你有3列country_X,并且给定的country_X的每一行都是相同的,没有null,这意味着每个show都与这3个国家有关。如果你的show只适用于3个国家中的2个呢?


如果您的数据模式可以修改,维护相关国家信息的更灵活的方法是为每个show提供单个ArrayType列。

val df = Seq(
("Netflix",     "The Crown",             Seq(34521, 49678)),
("Netflix",     "Bridgerton",            Seq(34521)),
("Netflix",     "The Queen's Gambit",    Seq(10001, 49678)),
("Peacock",     "The Office",            Seq(34521, 49678)),
("Disney+",     "WandaVision",           Seq(10001, 20002, 34521)),
("Disney+",     "Marvel's 616",          Seq(49678)),
("Disney+",     "The Mandalorian",       Seq(34521, 49678)),
("Apple TV",    "Ted Lasso",             Seq(34521, 49678)),
("Apple TV",    "The Morning Show",      Seq(20002, 34521))
).toDF("service", "show", "countries")
val grouped = df.withColumn("country", explode($"countries")).
groupBy("service", "country").agg(collect_list($"show").as("shows"))
val service_information = grouped.groupBy("service").
agg(collect_list($"country").as("c_list"), collect_list($"shows").as("s_list")).
select($"service", map_from_arrays($"c_list", $"s_list").as("information"))
service_information.show(false)
// +--------+-----------------------------------------------------------------------------------------------------------------------------------+
// |service |information                                                                                                                        |
// +--------+-----------------------------------------------------------------------------------------------------------------------------------+
// |Peacock |[34521 -> [The Office], 49678 -> [The Office]]                                                                                     |
// |Disney+ |[20002 -> [WandaVision], 49678 -> [Marvel's 616, The Mandalorian], 34521 -> [WandaVision, The Mandalorian], 10001 -> [WandaVision]]|
// |Apple TV|[34521 -> [Ted Lasso, The Morning Show], 49678 -> [Ted Lasso], 20002 -> [The Morning Show]]                                        |
// |Netflix |[49678 -> [The Crown, The Queen's Gambit], 10001 -> [The Queen's Gambit], 34521 -> [The Crown, Bridgerton]]                        |
// +--------+-----------------------------------------------------------------------------------------------------------------------------------+

相关内容

  • 没有找到相关文章