如何使用Beautiful Soup从涉及html表的页面中抓取产品信息


import requests
from bs4 import BeautifulSoup
import pandas as pd
baseurl='https://books.toscrape.com/'
headers ={
'User-Agent':'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/91.0.4472.114 Safari/537.36'
}
r =requests.get('https://books.toscrape.com/' )
soup=BeautifulSoup(r.content, 'html.parser')
productlinks=[]
Title=[]
Brand=[]
tra = soup.find_all('article',class_='product_pod')
for links in tra:
for link in links.find_all('a',href=True)[1:]:
comp=baseurl+link['href']
productlinks.append(comp)
for link in productlinks:
r =requests.get(link,headers=headers)
soup=BeautifulSoup(r.content, 'html.parser')
try:
title=soup.find('h3').text
except:
title=' '
Title.append(title)
price=soup.find('p',class_="price_color").text.replace('£','').replace(',','').strip()
Brand.append(price)
df = pd.DataFrame(

{"Title": Title, "Price": price}
)
print(df)

上面的脚本按预期工作,但我想刮取每个产品的信息,如upc,product type获取这些单页信息https://books.toscrape.com/catalogue/a-light-in-the-attic_1000/index.html刮除upcproduct type等…其他信息在产品信息

您可以使用URL中的start=参数获取下一页:

import requests
from bs4 import BeautifulSoup
for page in range(0, 10):  # <-- increase number of pages here
r = requests.get(
"https://pk.indeed.com/jobs?q=&l=Lahore&start={}".format(page * 10)
)
soup = BeautifulSoup(r.content, "html.parser")
title = soup.find_all("h2", class_="jobTitle")
for i in title:
print(i.text)

打印:

Data Entry Work Online
newAdmin Assistant
newNCG Agent
Data Entry Operator
newResearch Associate Electrical
Administrative Assistant (Executive Assistant)
Admin Assistant Digitally
newIT Officer (Remote Work)
OFFICE ASSISTANT
Cash Officer - Lahore Region
newDeputy Manager Finance
Admin Assistant
Lab Assistant
newProduct Portfolio & Customer Service Specialist
Front Desk Officer
newRelationship Manager, Recovery
MANAGEMENT TRAINEE PROGRAM
Email Support Executive (International)
Data Entry Operator
Admin officer
...and so on.

相关内容

  • 没有找到相关文章

最新更新