y应该是一个1d数组,得到了一个shape()数组



我已经训练并保存了一个模型。我试图在新数据上进一步训练模型,但它会产生错误。代码的相关部分:

from tensorflow.keras.preprocessing.text import Tokenizer
# The maximum number of words to be used. (most frequent)
MAX_NB_WORDS = 50000
# Max number of words in each complaint.
MAX_SEQUENCE_LENGTH = 250
# This is fixed.
EMBEDDING_DIM = 100
tokenizer = Tokenizer(num_words=MAX_NB_WORDS, filters='!"#$%&()*+,-./:;<=>?@[]^_`{|}~', lower=True)
tokenizer.fit_on_texts(master_df['Observation'].values)
word_index = tokenizer.word_index
from sklearn.feature_extraction.text import CountVectorizer
cv=CountVectorizer(max_df=1.0,min_df=1, stop_words=stop_words, max_features=10000, ngram_range=(1,3))
X=cv.fit_transform(X)
with open("../sgd.pickle", 'rb') as f:
sgd = pickle.load(f)
def output_sample(sentence):
test=preprocess_text(sentence)
test=test.lower()
#print(test)
test=[test] 
tokenizer.fit_on_sequences(test)
new_words= tokenizer.word_index
#print(word_index)``
test1=cv.transform(test)
#print(test1)
output=sgd.predict(test1)
return output[0]
def retrain(X,y):
X=preprocess_text(X)
X=X.lower()
X=[X]
tokenizer.fit_on_texts(X)
new_words=tokenizer.word_index
X=cv.fit_transform(X)
sgd.fit(X,y)
with open('sgd.pickle', 'wb') as f:
pickle.dump(sgd, f)
print("Model trained on new data")
sentence=input("nnEnter your observation:nn")
output=output_sample(sentence)
print("nnThe risk prediction is",preprocess_text(output),"nn")
print("Is the above prediction correct?n")
corr=input("Press 'y' for yes or 'n' for no.n")
if corr=='y':
newy=np.array(output)
retrain(sentence,newy)
elif corr=='n':
print("What is the correct risk?n1. Lown2. Mediumn")
r=input("Enter the appropriate number: ")
if r=='1':
newy=np.array('Low')
retrain(sentence,newy)
elif r=='2':
newy=np.array('Medium')
retrain(sentence,newy)
else:
print("Incorrect input. Please restart the application.")
else:
print("Incorrect input. Please restart the application")

程序运行时,错误发生在sgd.fit(X,y)。错误是

---------------------------------------------------------------------------
ValueError                                Traceback (most recent call last)
~AppDataLocalTemp/ipykernel_11300/3528077041.py in <module>
5     newy=[output]
6     print(newy)
----> 7     retrain(sentence,newy)
8 
9 elif corr=='n':
~AppDataLocalTemp/ipykernel_11300/2433836763.py in retrain(X, y)
7     X=cv.fit_transform(X)
8     #y = y.reshape((-1, 1))
----> 9     sgd.fit(X,y)
10     with open('sgd.pickle', 'wb') as f:
11         pickle.dump(sgd, f)
~AppDataLocalProgramsPythonPython38libsite-packagessklearnpipeline.py in fit(self, X, y, **fit_params)
344             if self._final_estimator != 'passthrough':
345                 fit_params_last_step = fit_params_steps[self.steps[-1][0]]
--> 346                 self._final_estimator.fit(Xt, y, **fit_params_last_step)
347 
348         return self
~AppDataLocalProgramsPythonPython38libsite-packagessklearnlinear_model_stochastic_gradient.py in fit(self, X, y, coef_init, intercept_init, sample_weight)
727             Returns an instance of self.
728         """
--> 729         return self._fit(X, y, alpha=self.alpha, C=1.0,
730                          loss=self.loss, learning_rate=self.learning_rate,
731                          coef_init=coef_init, intercept_init=intercept_init,
~AppDataLocalProgramsPythonPython38libsite-packagessklearnlinear_model_stochastic_gradient.py in _fit(self, X, y, alpha, C, loss, learning_rate, coef_init, intercept_init, sample_weight)
567         self.t_ = 1.0
568 
--> 569         self._partial_fit(X, y, alpha, C, loss, learning_rate, self.max_iter,
570                           classes, sample_weight, coef_init, intercept_init)
571 
~AppDataLocalProgramsPythonPython38libsite-packagessklearnlinear_model_stochastic_gradient.py in _partial_fit(self, X, y, alpha, C, loss, learning_rate, max_iter, classes, sample_weight, coef_init, intercept_init)
529                              max_iter=max_iter)
530         else:
--> 531             raise ValueError(
532                 "The number of classes has to be greater than one;"
533                 " got %d class" % n_classes)
ValueError: The number of classes has to be greater than one; got 1 class

数据示例如下:

Observation                                             Risk
0   A separate road for light vehicle should be ma...   Low
2   All benches were not having sufficient berm.        Low
3   As light arrangement is not adequate.               Low
4   As light arrangement is not adequate.               Low
5   As contractor's equipment record is not availa...   Low
77  First aid Room is not established.                  Medium
98  Heavy dust on haul road is found with in suffi...   Medium
79  First aid station is maintained in the Rest sh...   Medium
171 Presently explosive van is not available with ...   Medium
79  First aid station is maintained in the Rest sh...   Medium

理想情况下,它应该接受输入,但我不知道为什么它会给出这个错误。

我清理了代码并对retrain函数做了一些更改,现在该函数将添加一个新的字符串和标签到训练集并再次适合分类器。代码的其他部分在逻辑上保持不变!

效用函数:

def output_sample(sentence):
test=preprocess_text(sentence)
test=test.lower()
test=[test] 
tokenizer.fit_on_sequences(test)
new_words= tokenizer.word_index
test1=cv.transform(test)
output=sgd.predict(test1)
return output[0]
def preprocess_text(string):
# do whatever you want but return String afterward ;)
return string
def retrain(X,y):
X=preprocess_text(X)
X=X.lower()
X=[X]
X = cv.fit_transform(master_df['Observation']+X)
new_words=tokenizer.word_index
sgd.fit(X,master_df['Risk']+y)
with open('sgd.pickle', 'wb') as f:
pickle.dump(sgd, f)
print("Model trained on new data")
实际流:

import numpy as np 
import pickle
import nltk
from sklearn.feature_extraction.text import CountVectorizer
stopwords = nltk.corpus.stopwords.words('english')
cv=CountVectorizer(max_df=1.0,min_df=1, stop_words=stopwords, max_features=10000, ngram_range=(1,3))
master_df = pd.read_csv('classification.tsv')
X=cv.fit_transform(master_df['Observation'])
from sklearn.linear_model import SGDClassifier
try:
f = open("./sgd.pickle", 'rb')
sgd = pickle.load(f)
except:
sgd = SGDClassifier()
sgd.fit(X, master_df['Risk'].to_list())

sentence=input("nnEnter your observation:nn")
output=output_sample(sentence)
print("nnThe risk prediction is",preprocess_text(output),"nn")
print("Is the above prediction correct?n")
corr=input("Press 'y' for yes or 'n' for no.n")
if corr=='y':
newy=np.array(output)
retrain(sentence, newy)
elif corr=='n':
print("What is the correct risk?n1. Lown2. Mediumn")
r=input("Enter the appropriate number: ")
if r=='1':
newy=np.array('Low')
retrain(sentence,newy)
elif r=='2':
newy=np.array('Medium')
retrain(sentence,newy)
else:
print("Incorrect input. Please restart the application.")
else:
print("Incorrect input. Please restart the application")

相关内容

  • 没有找到相关文章

最新更新