我想在job_transitions_sample.csv中创建两个新列,并从wage_data_sample.csv中为标题1和标题2添加工资数据:
job_transitions_sample.csv:
Title 1 Title 2 Count
0 administrative assistant office manager 20
1 accountant cashier 1
2 accountant financial analyst 22
4 accountant senior accountant 23
6 accounting clerk bookkeeper 11
7 accounts payable clerk accounts receivable clerk 8
8 administrative assistant accounting clerk 8
9 administrative assistant administrative clerk 12
...
wage_data_sample.csv
title wage
0 cashier 17.00
1 sandwich artist 18.50
2 dishwasher 20.00
3 babysitter 20.00
4 barista 21.50
5 housekeeper 21.50
6 retail sales associate 23.00
7 bartender 23.50
8 cleaner 23.50
9 line cook 23.50
10 pizza cook 23.50
...
我希望最终结果看起来像这样:
Title 1 Title 2 Count Wage of Title 1 Wage of Title 2
0 administrative assistant office manager 20 NaN NaN
1 accountant cashier 1 NaN NaN
2 accountant financial analyst 22 NaN NaN
...
我正在考虑使用字典,然后尝试迭代每一列,但有没有更优雅的内置解决方案?这是我迄今为止的代码:
wage_data = pd.read_csv('wage_data_sample.csv')
dict = dict(zip(wage_data.title, wage_data.wage))
通过字典d
使用Series.map
-不能将dict
用于变量名称,因为python代码名称:
df = pd.read_csv('job_transitions_sample.csv')
wage_data = pd.read_csv('wage_data_sample.csv')
d = dict(zip(wage_data.title, wage_data.wage))
df['Wage of Title 1'] = df['Title 1'].map(d)
df['Wage of Title 2'] = df['Title 2'].map(d)
您可以依次尝试使用两个merge
来控制两个不同的标题。
例如,设为
-
df1:job_transitions_sample.csv
-
df2:wage_data_sample.csv
df1.merge