姓名 | 年龄 | 地址||
---|---|---|---|
1 | "Steve"> | 27 | {"数字":4,"街道":"主干道","城市":"牛津"} |
2 | ";亚当 | 32 | {"数字":78,"街道":"高街","城市":"剑桥"} |
您可以使用pd.DataFrame
将列address
中的JSON/dict扩展为JSON/Ddict内容的数据帧。然后,使用.join()
与原始数据帧连接,如下所示:
可选步骤:如果JSON/dict实际上是字符串,请先将它们转换为正确的JSON/dict。否则,请跳过此步骤。
import ast
df['address'] = df['address'].map(ast.literal_eval)
主要代码:
import pandas as pd
df[['name', 'age']].join(pd.DataFrame(df['address'].tolist(), index=df.index).add_prefix('address.'))
结果:
name age address.number address.street address.city
1 Steve 27 4 Main Road Oxford
2 Adam 32 78 High St Cambridge
或者,如果您从JSON/dict中只有几列要添加,也可以使用字符串访问器str[]
逐个添加,如下所示
df['address.number'] = df['address'].str['number']
df['address.street'] = df['address'].str['street']
df['address.city'] = df['address'].str['city']
设置
import pandas as pd
data = {'name': {1: 'Steve', 2: 'Adam'},
'age': {1: 27, 2: 32},
'address': {1: {"number": 4, "street": "Main Road", "city": "Oxford"},
2: {"number": 78, "street": "High St", "city": "Cambridge"}}}
df = pd.DataFrame(data)
根据用例的不同,设置聚合管道并$project必要的嵌套文档到顶层可能更有意义:
df = pd.DataFrame(db.collection_name.aggregate([{
'$project': {
'_id': 0,
'name': '$name',
'age': '$age',
# Raise Sub-documents to top-level under new name
'address_number': '$address.number',
'address_street': '$address.street',
'address_city': '$address.city'
}
}]))
df
:
name age address_number address_street address_city
0 Steve 27 4 Main Road Oxford
1 Adam 32 78 High St Cambridge
或者,如果有太多的字段需要手动处理,我们也可以使用replaceRoot
和mergeObjects
:
df = pd.DataFrame(db.collection_name.aggregate([
{'$replaceRoot': {'newRoot': {'$mergeObjects': ["$$ROOT", "$address"]}}},
{'$project': {'_id': 0, 'address': 0}}
]))
df
:
name age number street city
0 Steve 27 4 Main Road Oxford
1 Adam 32 78 High St Cambridge
collection_name
设置:
# Drop Collection if exists
db.collection_name.drop()
# Insert Sample Documents
db.collection_name.insert_many([{
'name': 'Steve', 'age': 27,
'address': {"number": 4, "street": "Main Road", "city": "Oxford"}
}, {
'name': 'Adam', 'age': 32,
'address': {"number": 78, "street": "High St", "city": "Cambridge"}
}])