Interpolate_to_grid返回所有nan



使用MetPy Monday interpolate_to_grid练习metar数据,我成功地使mslp网格工作起来。继续讨论潜在温度,结果都很糟糕。当它";作品";。当它不起作用时,我会得到一系列似乎没有帮助的错误。。。

import numpy as np
import cartopy.crs as ccrs
import cartopy.feature as cfeature
import matplotlib.pyplot as plt
from siphon.catalog import TDSCatalog
from metpy.io import parse_metar_file
from metpy.interpolate import interpolate_to_grid, remove_nan_observations
from metpy.plots import add_metpy_logo, current_weather, sky_cover, StationPlot
from metpy.calc import wind_components, wet_bulb_temperature, altimeter_to_station_pressure,potential_temperature,gradient
from metpy.units import units
from datetime import datetime,timedelta
import pandas as pd
mapcrs = ccrs.LambertConformal(central_longitude=-100.,central_latitude=35.,standard_parallels=(30.,60.))
datacrs = ccrs.PlateCarree()
cat = TDSCatalog('https://thredds-test.unidata.ucar.edu/thredds/catalog/noaaport/text/metar/catalog.xml')
ds = cat.datasets[-4]
dattim = ds.name[6:14]+' '+ds.name[15:19]
ds.download()
df = parse_metar_file(ds.name)
#pandas dataframe
#df.head()
df.columns.values
extent = [-120,-72,24,50]
df = df.dropna(subset=['latitude','longitude','elevation','altimeter','air_temperature','eastward_wind','northward_wind','air_pressure_at_sea_level','dew_point_temperature'])
lon = df['longitude'].values
lat = df['latitude'].values
stn_ids = df['station_id'].values
elev = df['elevation'].values
altimeter = df['altimeter'].values
t2 = df['air_temperature'].values
mslp = df['air_pressure_at_sea_level'].values
#projected coords
xp, yp, _ = mapcrs.transform_points(datacrs,lon,lat).T # x,y returned
#mslp WORKS
x_masked, y_masked, mslp = remove_nan_observations(xp,yp,mslp)
#altgridx,altgridy,alt = interpolate_to_grid(x_masked,y_masked,alt, interp_type='cressman')
altgridx,altgridy,mslp = interpolate_to_grid(x_masked,y_masked,mslp, interp_type='barnes',gamma=.5,kappa_star=10, hres=25000)
#Potential Temperature doesnt work
pres = altimeter_to_station_pressure(altimeter * units('mbar'), elev * units('m'))*33.8639
print(pres)
# theta
x_masked, y_masked, temp = remove_nan_observations(xp,yp,t2*units('degC'))
x_masked, y_masked, pres = remove_nan_observations(xp,yp,pres)
print(np.size(temp))
potemp = potential_temperature(pres, temp)
print(np.size(potemp))
print(np.unique(np.array(potemp)))
grdx = 75000.
thgridx,thgridy,theta = interpolate_to_grid(x_masked,y_masked, potemp, interp_type='barnes',kappa_star=6, gamma=0.5,hres=grdx)
print(np.shape(thgridx))
print(np.unique(theta))

以下是从最后一节返回的内容:

[949.361081708803 993.4468013877739 987.2845093729651 ... 1029.0930108008558 1016.002484792407 930.3708063382303] millibar
5837
5837
[236.32885315 237.21299941 239.04372591 ... 368.37047837 369.20079652
370.76269267]
---------------------------------------------------------------------------
DimensionalityError                       Traceback (most recent call last)
~/miniconda3/lib/python3.7/site-packages/pint/quantity.py in __float__(self)
896             return float(self._convert_magnitude_not_inplace(UnitsContainer()))
--> 897         raise DimensionalityError(self._units, "dimensionless")
898 
DimensionalityError: Cannot convert from 'kelvin' to 'dimensionless'
The above exception was the direct cause of the following exception:
ValueError                                Traceback (most recent call last)
/var/folders/5n/sg5k98bx6gg4flb4fskykh4m0000gn/T/ipykernel_41626/379842406.py in <module>
11 
12 grdx = 75000.
---> 13 thgridx,thgridy,theta = interpolate_to_grid(x_masked,y_masked, potemp, interp_type='barnes',kappa_star=6, gamma=0.5,hres=grdx)
14 print(np.shape(thgridx))
15 print(np.unique(theta))
~/miniconda3/lib/python3.7/site-packages/metpy/pandas.py in wrapper(*args, **kwargs)
19         kwargs = {name: (v.values if isinstance(v, pd.Series) else v)
20                   for name, v in kwargs.items()}
---> 21         return func(*args, **kwargs)
22     return wrapper
~/miniconda3/lib/python3.7/site-packages/metpy/interpolate/grid.py in interpolate_to_grid(x, y, z, interp_type, hres, minimum_neighbors, gamma, kappa_star, search_radius, rbf_func, rbf_smooth, boundary_coords)
301                                 minimum_neighbors=minimum_neighbors, gamma=gamma,
302                                 kappa_star=kappa_star, search_radius=search_radius,
--> 303                                 rbf_func=rbf_func, rbf_smooth=rbf_smooth)
304 
305     return grid_x, grid_y, img.reshape(grid_x.shape)
~/miniconda3/lib/python3.7/site-packages/metpy/interpolate/points.py in interpolate_to_points(points, values, xi, interp_type, minimum_neighbors, gamma, kappa_star, search_radius, rbf_func, rbf_smooth)
365             return inverse_distance_to_points(points, values, xi, search_radius, gamma, kappa,
366                                               min_neighbors=minimum_neighbors,
--> 367                                               kind=interp_type)
368 
369     # If this is radial basis function, make the interpolator and apply it
~/miniconda3/lib/python3.7/site-packages/metpy/interpolate/points.py in inverse_distance_to_points(points, values, xi, r, gamma, kappa, min_neighbors, kind)
268                 img[idx] = cressman_point(dists, values_subset, r)
269             elif kind == 'barnes':
--> 270                 img[idx] = barnes_point(dists, values_subset, kappa, gamma)
271 
272             else:
ValueError: setting an array element with a sequence.

我在单位上很吃力,但我认为单位现在是正确的。是什么原因造成的?我试过cressman,我试过更大的Barnes网格,我试着确保search_radius很大。还是楠,当它工作的时候。

这个问题是由interpolate_to_grid在使用Cressman或Barnes时被单位卡住引起的——我们肯定需要解决这个问题。目前的解决方案是使用不同的插值方法(如默认的interp_type='linear'(,或者在调用之前剥离单位

thgridx, thgridy, theta = interpolate_to_grid(x_masked, y_masked, potemp.magnitude,
interp_type='barnes', kappa_star=6, gamma=0.5, hres=grdx)
theta = units.Quantity(theta, 'K')

NaNs的问题而言,您可能需要查看search_radius参数,该参数控制与所考虑的目标点的最大距离。在一些数据稀疏的区域,这可能会导致您有一些退出。默认情况下,它使用从一个ob点到最近邻居的平均距离的5倍的猜测。

相关内容

  • 没有找到相关文章

最新更新