我正在不平衡的panal数据集中进行事件研究。基本结构是,在大约15年的时间里,我在不同的时间点对每家公司进行了不同数量的观察(交付(。我对一个事件(价格上涨(感兴趣,如果它发生了,它被编码为一个伪变量,并有一些伪超前和滞后,以检查价格上涨对我的因变量的影响是否在该事件周围变得明显。例如,对于一些公司来说,价格上涨发生在5次交付时,例如在15年内交付50次。
然而,现在我也想"模拟";在一年后和一年前对同一事件进行研究,以提高推理能力。因此,我希望R在最接近一年前和一年后的交付中为每家公司复制事件假人。交货日期不是每天都有,而是平均每25天一次。
因此,作为代码,数据看起来像这样:
df <- data.frame(firm_id = c(1,1,1,1,1,2,2,2,3,3,3,3,3,3,3,3,3,3,4,4,4,4),
delivery_id = c(1,2,6,9,15,3,5,18,4,7,8,10,11,13,17,19,22,12,14,16,20,21),
date=c("2004-06-16", "2004-08-12", "2004-11-22", "2005-07-03", "2007-01-04",
"2004-09-07", "2005-02-01", "2006-01-17",
"2004-10-11", "2005-02-01", "2005-04-27", "2005-06-01", "2005-07-01",
"2006-01-03", "2007-01-06", "2007-03-24", "2007-05-03",
"2005-08-03", "2006-02-19", "2006-06-13", "2007-02-04", "2007-04-26"),
price_increase = c(0,0,0,1,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0),
price_increase_year_before = c(1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,0,0),
price_increase_year_afer = c(0,0,0,0,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0))
创建
firm_id delivery_id date price_increase price_increase_year_before price_increase_year_after
1 1 1 2004-06-16 0 1 0
2 1 2 2004-08-12 0 0 0
3 1 6 2004-11-22 0 0 0
4 1 9 2005-07-03 1 0 0
5 1 15 2007-01-04 0 0 0
6 2 3 2004-09-07 0 0 0
7 2 5 2005-02-01 0 0 0
8 2 18 2006-01-17 0 0 0
9 3 4 2004-10-11 0 0 0
10 3 7 2005-02-01 0 1 0
11 3 8 2005-04-27 0 0 0
12 3 10 2005-06-01 0 0 0
13 3 11 2005-07-01 0 0 0
14 3 13 2006-01-03 1 0 0
15 3 17 2007-01-06 0 0 1
16 3 19 2007-03-24 0 0 0
17 3 22 2007-05-03 0 0 0
18 3 12 2005-08-03 0 0 0
19 4 14 2006-02-19 0 0 0
20 4 16 2006-06-13 0 0 0
21 4 20 2007-02-04 0 0 0
22 4 21 2007-04-26 0 0 0
我想在右边为每个公司创建两个基于price_increation和date的伪列。虽然我会从dyplr的group_by
和mutate
方法以及if_else
函数开始,但我不知道如何创建一个条件,当一年中的交付距离上一年或下一年的日期+1/-1个月时,该条件变为TRUE
,也不知道如何选择相应的交付。你们有主意吗?
这里有一种使用dplyr
的可能方法。
在group_by(firm_id)
、filter
之后,包括价格上涨的组。
然后,如果日期在price_increase
等于1的日期之前或之后一年(+/-30天(,则创建两个伪变量。那么,对于满足这些条件的行,将使用filter
。
使用distinct
,您可以防止组/公司中虚拟变量的倍数或重复。否则,如果你的交货间隔25天,这似乎是一种理论上的可能性。
之后的其余部分是连接回原始数据,将空列的NA
替换为零,并进行排序。
library(dplyr)
df$date <- as.Date(df$date)
df %>%
group_by(firm_id) %>%
filter(any(price_increase == 1)) %>%
mutate(
price_increase_year_before = ifelse(
between(date[price_increase == 1] - date, 335, 395), 1, 0),
price_increase_year_after = ifelse(
between(date - date[price_increase == 1], 335, 395), 1, 0),
) %>%
filter(price_increase_year_before == 1 | price_increase_year_after == 1) %>%
distinct(firm_id, price_increase_year_before, price_increase_year_after, .keep_all = TRUE) %>%
right_join(df) %>%
replace_na(list(price_increase_year_before = 0, price_increase_year_after = 0)) %>%
arrange(firm_id, date)
输出
firm_id delivery_id date price_increase price_increase_year_before price_increase_year_after
<dbl> <dbl> <date> <dbl> <dbl> <dbl>
1 1 1 2004-06-16 0 1 0
2 1 2 2004-08-12 0 0 0
3 1 6 2004-11-22 0 0 0
4 1 9 2005-07-03 1 0 0
5 1 15 2007-01-04 0 0 0
6 2 3 2004-09-07 0 0 0
7 2 5 2005-02-01 0 0 0
8 2 18 2006-01-17 0 0 0
9 3 4 2004-10-11 0 0 0
10 3 7 2005-02-01 0 1 0
11 3 8 2005-04-27 0 0 0
12 3 10 2005-06-01 0 0 0
13 3 11 2005-07-01 0 0 0
14 3 12 2005-08-03 0 0 0
15 3 13 2006-01-03 1 0 0
16 3 17 2007-01-06 0 0 1
17 3 19 2007-03-24 0 0 0
18 3 22 2007-05-03 0 0 0
19 4 14 2006-02-19 0 0 0
20 4 16 2006-06-13 0 0 0
21 4 20 2007-02-04 0 0 0
22 4 21 2007-04-26 0 0 0