使用dplyr合并数据集并合并列R



我有两个数据集正在尝试合并。它们不是完整的数据集,因此这意味着个人缺少记录。

这里是data1(示例是我的真实数据的子集(:

squirrel_id   age ageclass trialdate   year   OFT1  MIS1
10342     1 Y        2008-05-19  2008  0.605 -4.19
10342     2 A        2009-05-31  2009 -1.85   1.14
10342     3 A        2010-05-22  2010 -2.39   2.38

这里是data2(示例是我的真实数据的子集(:

squirrel_id focal_age focal_ageclass focal_date focal_yr     PC1     PC2
10342         1 Y              2008-07-14     2008    0.0932 -2.67  
10342         3 A              2010-03-13     2010   -2.38    0.216 
10342         3 A              2010-04-20     2010    0.0203  1.80  

我试着做两件事:

  1. 合并这两个数据集,以便在记录不完整时保留NA(即,data1age==3有1条记录,而data2age==3有2条记录(
  2. 合并列以使数据集更加精简(即,数据集中具有不同名称的列表示相同的内容:age==focal_ageageclass==focal_ageclasstrialnumber==focalseqageclass==focal_ageclassyear==focal_yr(

所需输出-我正在尝试获得一个最终的数据集,它看起来像这样(其中对于age==3data1记录只显示一次,而不是两次(:

squirrel_id   age ageclass date       year   OFT1  MIS1   PC1      PC2
10342     1 Y        2008-05-19 2008  0.605 -4.19   NA       NA 
10342     1 Y        2008-07-14 2008  NA     NA     0.0932  -2.67
10342     2 A        2009-05-31 2009 -1.85   1.14   NA       NA
10342     3 A        2010-05-22 2010 -2.39   2.38   NA       NA    
10342     3 A        2010-03-13 2010  NA     NA    -2.38    0.216
10342     3 A        2010-04-20 2010  NA     NA     0.0203  1.80  

我可以通过做来实现这一目标

data3<-full_join(data1, data2, 
by=c("squirrel_id"="squirrel_id", 
"year"="focal_yr", 
"age"="focal_age", 
"ageclass"="focal_ageclass"))

但是,对于data2中的两个age==3行,这重复了age==3data1值(而不是仅匹配第一行(,给出了此(不需要(输出:

squirrel_id   age ageclass trialdate   focal_date year   OFT1  MIS1   PC1      PC2
10342     1 Y        2008-05-19  2008-07-14 2008  0.605 -4.19   0.0932  -2.67 
10342     2 A        2009-05-31  NA         2009 -1.85   1.14   NA       NA
10342     3 A        2010-05-22  2010-03-13 2010 -2.39   2.38   -2.38    0.216
10342     3 A        2010-05-22  2010-04-20 2010 -2.39   2.38    0.0203  1.80  

更新的问题:在执行full_join时,如何让匹配的记录为所有行添加NA请注意,我更喜欢dplyr解决方案,因为我不在data.table中工作(就像这个OP的答案一样(,并且我想保留不匹配的行(不像其他OP(。

以下是data.table方法

样本数据

library(data.table)
data1 <- fread("squirrel_id   age ageclass trialdate   year   OFT1  MIS1
10342     1 Y        2008-05-19  2008  0.605 -4.19
10342     2 A        2009-05-31  2009 -1.85   1.14
10342     3 A        2010-05-22  2010 -2.39   2.38")
data2 <- fread("squirrel_id focal_age focal_ageclass focal_date focal_yr     PC1     PC2
10342         1 Y              2008-07-14     2008    0.0932 -2.67  
10342         3 A              2010-03-13     2010   -2.38    0.216 
10342         3 A              2010-04-20     2010    0.0203  1.80 ")

代码

# Assuming the first five columns can be rowbound without problem,
# melt them to long
L <- lapply(list(data1, data2), melt, id.vars = 1:5)
#    squirrel_id age ageclass  trialdate year variable  value
# 1:       10342   1        Y 2008-05-19 2008     OFT1  0.605
# 2:       10342   2        A 2009-05-31 2009     OFT1 -1.850
# 3:       10342   3        A 2010-05-22 2010     OFT1 -2.390
# 4:       10342   1        Y 2008-05-19 2008     MIS1 -4.190
# 5:       10342   2        A 2009-05-31 2009     MIS1  1.140
# 6:       10342   3        A 2010-05-22 2010     MIS1  2.380
# 
# [[2]]
#    squirrel_id focal_age focal_ageclass focal_date focal_yr variable   value
# 1:       10342         1              Y 2008-07-14     2008      PC1  0.0932
# 2:       10342         3              A 2010-03-13     2010      PC1 -2.3800
# 3:       10342         3              A 2010-04-20     2010      PC1  0.0203
# 4:       10342         1              Y 2008-07-14     2008      PC2 -2.6700
# 5:       10342         3              A 2010-03-13     2010      PC2  0.2160
# 6:       10342         3              A 2010-04-20     2010      PC2  1.8000
# Rowbind, ignore columnnames
DT <- data.table::rbindlist(L, use.names = FALSE, fill = FALSE)
#    squirrel_id age ageclass  trialdate year variable   value
# 1:       10342   1        Y 2008-05-19 2008     OFT1  0.6050
# 2:       10342   2        A 2009-05-31 2009     OFT1 -1.8500
# 3:       10342   3        A 2010-05-22 2010     OFT1 -2.3900
# 4:       10342   1        Y 2008-05-19 2008     MIS1 -4.1900
# 5:       10342   2        A 2009-05-31 2009     MIS1  1.1400
# 6:       10342   3        A 2010-05-22 2010     MIS1  2.3800
# 7:       10342   1        Y 2008-07-14 2008      PC1  0.0932
# 8:       10342   3        A 2010-03-13 2010      PC1 -2.3800
# 9:       10342   3        A 2010-04-20 2010      PC1  0.0203
#10:       10342   1        Y 2008-07-14 2008      PC2 -2.6700
#11:       10342   3        A 2010-03-13 2010      PC2  0.2160
#12:       10342   3        A 2010-04-20 2010      PC2  1.8000
# Cast to wide again
dcast(DT, ... ~ variable, value.var = "value")
#    squirrel_id age ageclass  trialdate year   OFT1  MIS1     PC1    PC2
# 1:       10342   1        Y 2008-05-19 2008  0.605 -4.19      NA     NA
# 2:       10342   1        Y 2008-07-14 2008     NA    NA  0.0932 -2.670
# 3:       10342   2        A 2009-05-31 2009 -1.850  1.14      NA     NA
# 4:       10342   3        A 2010-03-13 2010     NA    NA -2.3800  0.216
# 5:       10342   3        A 2010-04-20 2010     NA    NA  0.0203  1.800
# 6:       10342   3        A 2010-05-22 2010 -2.390  2.38      NA     NA

相关内容

  • 没有找到相关文章

最新更新