访问雅虎财经104只股票的收盘价,但它将数据附加在单行而不是列中



tickers = "GNA.BO PDMJEPAPER.BO MEGH.BO REFEX.BO GULPOLY.BO TRIVENI.BO TCI.BO NUCLEUS.BO 
SHILPAMED.BO JUBILANT6.BO TITANBIO.BO INDOBORAX.BO POLYPLEX.BO MAZDALTD.BO KSE.BO RAJGLOWIR.BO 
MANORG.BO TATAMETALI.BO HIL.BO BAJAJST.BO TINPLATE.BO SESHAPAPER.BO DECCANCE.BO GESHIP.BO 
ESTER.BO DIAMINESQ.BO DENORA.BO UNICK.BO LASA.BO APLLTD.BO BESGALASM.BO KPRMILL.BO 
INSECTICID.BO SAREGAMA.BO WELCORP.BO KRITIIND.BO PRECWIRE.BO UNIDT.BO RACLGEAR.BO FINOLEXIND.BO 
CEATLTD.BO NATPEROX.BO BEPL.BO KNRCON.BO DAAWAT.BO DCBBANK.BO FIEMIND.BO VOLTAMP.BO ZENTEC.BO K 
EC.BO NAVINFLUOR.BO BALAJITELE.BO INDNIPPON.BO GMDCLTD.BO POLYMED.BO VIKRAMTH.BO SEAMECLTD.BO 
IPCALAB.BO PLASTIBLEN.BO ICIL.BO JBCHEPHARM.BO TRANSPEK.BO PHILIPCARB.BO FERMENTA.BO 
DHARAMSI.BO INDIANHUME.BO HFCL.BO METROGLOBL.BO OAL.BO PRICOLLTD.BO HGS.BO RTSPOWR.BO TIGLOB.BO 
MIRZAINT.BO HMVL.BO CGVAK.BO DHPIND.BO WPIL.BO MALLCOM.BO VIJSOLX.BO RUBFILA.BO ASAHISONG.BO 
HINDCOMPOS.BO CONTROLPR.BO EVERESTIND.BO PIXXTRANS.BO APCL.BO LGBBROSLTD.BO AMRUTANJAN.BO 
GSFC.BO PNBHOUSING.BO RVNL.BO IRCON.BO HATHWAY.BO MAHSEAMLES.BO GMRINFRA.BO AMBIKCO.BO CCL.BO 
MINDAIND.BO RAMCOIND.BO TNPETRO.BO PCJEWELLER.BO AHLEAST.BO SHARDA.BO ",
import yfinance as yf
import pandas as pd
tickerlist = tickers
df_list = list()
for tick in tickerlist:

data = yf.download(tick,  period='1d', threads='true')
data.drop(['Open','High','Low','Volume','Adj Close'], inplace=True, axis=1)
data = data.copy()

data['ticker'] = tick  

df_list.append(data)    


df = pd.concat(df_list)
df = df.T
# save to csv
df.to_csv('ticker.csv', header=True, index=True)    
print(df_list)

生成的csv文件有[1行x 105列]]生成的文件映像我不想对它进行转置因为我想在之后的列之间进行计算这会让它变得更困难?

对于长格式的数据收集,我认为很容易准备一个空数据帧,按顺序获取股票数据,并将其添加到空数据帧中。

import yfinance as yf
import pandas as pd
tickers = "GNA.BO PDMJEPAPER.BO MEGH.BO REFEX.BO GULPOLY.BO TRIVENI.BO TCI.BO NUCLEUS.BO" 
tickerlist = tickers.split(' ')
df_list = pd.DataFrame()
for tick in tickerlist:
data = yf.download(tick,  period='1d', threads='true')['Close'].to_frame()
data['ticker'] = tick
data.reset_index(inplace=True)
df_list = df_list.append(data, ignore_index=True)    
print(df_list)
Date    Close   ticker
0   2021-08-10  680.500000  GNA.BO
1   2021-08-10  41.650002   PDMJEPAPER.BO
2   2021-08-10  130.000000  REFEX.BO
3   2021-08-10  246.699997  GULPOLY.BO
4   2021-08-10  165.500000  TRIVENI.BO
5   2021-08-10  428.450012  TCI.BO
6   2021-08-10  680.000000  NUCLEUS.BO

相关内容

  • 没有找到相关文章

最新更新