InternalError:不能打开所有CUDA库



我试图运行这个Kaggle Jupyter Notebook的Python代码,遇到以下错误:

---------------------------------------------------------------------------
InternalError                             Traceback (most recent call last)
<ipython-input-40-be0fb0b18f3a> in <module>
1 #Defining Neural Network
----> 2 model = Sequential()
3 #Non-trainable embeddidng layer
4 model.add(Embedding(max_features, output_dim=embed_size, weights=[embedding_matrix], input_length=maxlen, trainable=False))
5 #LSTM
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythontrainingtrackingbase.py in _method_wrapper(self, *args, **kwargs)
528     self._self_setattr_tracking = False  # pylint: disable=protected-access
529     try:
--> 530       result = method(self, *args, **kwargs)
531     finally:
532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
c:userskimappdatalocalprogramspythonpython38libsite-packageskerasenginesequential.py in __init__(self, layers, name)
105     """
106     # Skip the init in FunctionalModel since model doesn't have input/output yet
--> 107     super(functional.Functional, self).__init__(  # pylint: disable=bad-super-call
108         name=name, autocast=False)
109     base_layer.keras_api_gauge.get_cell('Sequential').set(True)
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythontrainingtrackingbase.py in _method_wrapper(self, *args, **kwargs)
528     self._self_setattr_tracking = False  # pylint: disable=protected-access
529     try:
--> 530       result = method(self, *args, **kwargs)
531     finally:
532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
c:userskimappdatalocalprogramspythonpython38libsite-packageskerasenginetraining.py in __init__(self, *args, **kwargs)
287     self._steps_per_execution = None
288 
--> 289     self._init_batch_counters()
290     self._base_model_initialized = True
291 
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythontrainingtrackingbase.py in _method_wrapper(self, *args, **kwargs)
528     self._self_setattr_tracking = False  # pylint: disable=protected-access
529     try:
--> 530       result = method(self, *args, **kwargs)
531     finally:
532       self._self_setattr_tracking = previous_value  # pylint: disable=protected-access
c:userskimappdatalocalprogramspythonpython38libsite-packageskerasenginetraining.py in _init_batch_counters(self)
295     # `evaluate`, and `predict`.
296     agg = tf.VariableAggregation.ONLY_FIRST_REPLICA
--> 297     self._train_counter = tf.Variable(0, dtype='int64', aggregation=agg)
298     self._test_counter = tf.Variable(0, dtype='int64', aggregation=agg)
299     self._predict_counter = tf.Variable(
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsvariables.py in __call__(cls, *args, **kwargs)
266       return cls._variable_v1_call(*args, **kwargs)
267     elif cls is Variable:
--> 268       return cls._variable_v2_call(*args, **kwargs)
269     else:
270       return super(VariableMetaclass, cls).__call__(*args, **kwargs)
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsvariables.py in _variable_v2_call(cls, initial_value, trainable, validate_shape, caching_device, name, variable_def, dtype, import_scope, constraint, synchronization, aggregation, shape)
248     if aggregation is None:
249       aggregation = VariableAggregation.NONE
--> 250     return previous_getter(
251         initial_value=initial_value,
252         trainable=trainable,
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsvariables.py in <lambda>(**kws)
241                         shape=None):
242     """Call on Variable class. Useful to force the signature."""
--> 243     previous_getter = lambda **kws: default_variable_creator_v2(None, **kws)
244     for _, getter in ops.get_default_graph()._variable_creator_stack:  # pylint: disable=protected-access
245       previous_getter = _make_getter(getter, previous_getter)
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsvariable_scope.py in default_variable_creator_v2(next_creator, **kwargs)
2660   shape = kwargs.get("shape", None)
2661 
-> 2662   return resource_variable_ops.ResourceVariable(
2663       initial_value=initial_value,
2664       trainable=trainable,
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsvariables.py in __call__(cls, *args, **kwargs)
268       return cls._variable_v2_call(*args, **kwargs)
269     else:
--> 270       return super(VariableMetaclass, cls).__call__(*args, **kwargs)
271 
272 
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsresource_variable_ops.py in __init__(self, initial_value, trainable, collections, validate_shape, caching_device, name, dtype, variable_def, import_scope, constraint, distribute_strategy, synchronization, aggregation, shape)
1600       self._init_from_proto(variable_def, import_scope=import_scope)
1601     else:
-> 1602       self._init_from_args(
1603           initial_value=initial_value,
1604           trainable=trainable,
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonopsresource_variable_ops.py in _init_from_args(self, initial_value, trainable, collections, caching_device, name, dtype, constraint, synchronization, aggregation, distribute_strategy, shape)
1743               self._update_uid = initial_value.checkpoint_position.restore_uid
1744               initial_value = initial_value.wrapped_value
-> 1745             initial_value = ops.convert_to_tensor(initial_value,
1746                                                   name="initial_value",
1747                                                   dtype=dtype)
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonprofilertrace.py in wrapped(*args, **kwargs)
161         with Trace(trace_name, **trace_kwargs):
162           return func(*args, **kwargs)
--> 163       return func(*args, **kwargs)
164 
165     return wrapped
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonframeworkops.py in convert_to_tensor(value, dtype, name, as_ref, preferred_dtype, dtype_hint, ctx, accepted_result_types)
1564 
1565     if ret is None:
-> 1566       ret = conversion_func(value, dtype=dtype, name=name, as_ref=as_ref)
1567 
1568     if ret is NotImplemented:
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonframeworktensor_conversion_registry.py in _default_conversion_function(***failed resolving arguments***)
50 def _default_conversion_function(value, dtype, name, as_ref):
51   del as_ref  # Unused.
---> 52   return constant_op.constant(value, dtype, name=name)
53 
54 
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonframeworkconstant_op.py in constant(value, dtype, shape, name)
269     ValueError: if called on a symbolic tensor.
270   """
--> 271   return _constant_impl(value, dtype, shape, name, verify_shape=False,
272                         allow_broadcast=True)
273 
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonframeworkconstant_op.py in _constant_impl(value, dtype, shape, name, verify_shape, allow_broadcast)
281       with trace.Trace("tf.constant"):
282         return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
--> 283     return _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
284 
285   g = ops.get_default_graph()
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonframeworkconstant_op.py in _constant_eager_impl(ctx, value, dtype, shape, verify_shape)
306 def _constant_eager_impl(ctx, value, dtype, shape, verify_shape):
307   """Creates a constant on the current device."""
--> 308   t = convert_to_eager_tensor(value, ctx, dtype)
309   if shape is None:
310     return t
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythonframeworkconstant_op.py in convert_to_eager_tensor(value, ctx, dtype)
103     except AttributeError:
104       dtype = dtypes.as_dtype(dtype).as_datatype_enum
--> 105   ctx.ensure_initialized()
106   return ops.EagerTensor(value, ctx.device_name, dtype)
107 
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythoneagercontext.py in ensure_initialized(self)
534       opts = pywrap_tfe.TFE_NewContextOptions()
535       try:
--> 536         config_str = self.config.SerializeToString()
537         pywrap_tfe.TFE_ContextOptionsSetConfig(opts, config_str)
538         if self._device_policy is not None:
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythoneagercontext.py in config(self)
962     """Return the ConfigProto with all runtime deltas applied."""
963     # Ensure physical devices have been discovered and config has been imported
--> 964     self._initialize_physical_devices()
965 
966     config = config_pb2.ConfigProto()
c:userskimappdatalocalprogramspythonpython38libsite-packagestensorflowpythoneagercontext.py in _initialize_physical_devices(self, reinitialize)
1291         return
1292 
-> 1293       devs = pywrap_tfe.TF_ListPhysicalDevices()
1294       self._physical_devices = [
1295           PhysicalDevice(name=d.decode(), device_type=d.decode().split(":")[1])
InternalError: Cannot dlopen all CUDA libraries.

如何解决?

好的,所以我尝试了一些事情,安装tensorflow-gpu后,它工作了。也许它也可以帮助别人解决这个问题:

pip install tensorflow-gpu

相关内容

  • 没有找到相关文章

最新更新