假设我有以下数据集:
Date_Received = c("Addition 1/2/2018", "Swimming Pool 1/8/2018", "Abandonment 1/9/2018", "Existing Approval 3/14/2018", "Holding Tank 5/11/2018")
Date_Approved = c("1/2/2018", "1/8/2018", "1/9/2018", "SB 3/21/2018", "JW 5/11/2018")
并且我想在Date_Received
列中删除characters
之前的date
,以便稍后我可以使用lubridate
将其转换为date
类型的数据格式。
我尝试使用以下代码,但它只删除first
大写字母。
我该如何解决这个问题?
所需输出:
Date_Received Date_Approved
1/2/2018 1/2/2018
1/8/2018 1/8/2018
1/9/2018 1/9/2018
3/14/2018 SB 3/21/2018
5/11/2018 JW 5/11/2018
代码library(tidyverse)
df = data.frame(Date_Received, Date_Approved)
df= df%>% mutate(Date.Received = trimws(Date_Received, whitespace = "[A-Z]*\s*")) %>% filter(nzchar(Date.Received))
我们可以使用trimws
,它有一个whitespace参数(正如您在代码中使用的),可用于指定空白。
library(dplyr)
df %>%
mutate(Date_Received = trimws(Date_Received, "left", "\D"))
或与str_replace_all
:
library(stringr)
df %>%
mutate(Date_Received = str_replace_all(Date_Received, "^\D+", ""))
Date_Received Date_Approved
1 1/2/2018 1/2/2018
2 1/8/2018 1/8/2018
3 1/9/2018 1/9/2018
4 3/14/2018 SB 3/21/2018
5 5/11/2018 JW 5/11/2018
另一个选项使用sub
:
df$Date_Received <- sub("^\D+", "", df$Date_Received)
生活要简单:
Date_Received = c("Addition 1/2/2018", "Swimming Pool 1/8/2018", "Abandonment 1/9/2018", "Existing Approval 3/14/2018", "Holding Tank 5/11/2018")
stringr::word(Date_Received, -1)
[1] "1/2/2018" "1/8/2018" "1/9/2018" "3/14/2018" "5/11/2018"