我使用微调。我怎样才能看到和访问卷积基内所有层的激活?
conv_base = VGG16(weights='imagenet',
include_top=False,
input_shape=(inp_img_h, inp_img_w, 3))
def create_functional_model():
inp = Input(shape=(inp_img_h, inp_img_w, 3))
model = conv_base(inp)
model = Flatten()(model)
model = Dense(256, activation='relu')(model)
outp = Dense(1, activation='sigmoid')(model)
return Model(inputs=inp, outputs=outp)
model = create_functional_model()
model.summary()
模型摘要为
Layer (type) Output Shape Param #
=================================================================
vgg16 (Functional) (None, 7, 7, 512) 14714688
_________________________________________________________________
flatten_2 (Flatten) (None, 25088) 0
_________________________________________________________________
dense_4 (Dense) (None, 256) 6422784
_________________________________________________________________
dense_5 (Dense) (None, 1) 257
=================================================================
Total params: 21,137,729
Trainable params: 21,137,729
Non-trainable params: 0
_________________________________________________________________
因此,conv_base
内部的级别是不可访问的。
正如@ frtera在评论中所说,您可以通过以下方式访问基本模型摘要:
model.layers[0].summary()
如果你想访问它的图层的激活函数,你可以这样做:
print(model.layers[0].layers[index_of_layer].activation)
#or
print(model.layers[0].get_layer("name_of_layer").activation)