我正试图在Google Colab上训练EfficientNetB1,并不断遇到来自Keras或Tensorflow的正确导入语句的不同问题。Keras,目前我的导入看起来像
import tensorflow as tf
from tensorflow.keras import backend as K
from tensorflow.keras.preprocessing.image import ImageDataGenerator
from tensorflow.python.keras.layers.pooling import AveragePooling2D
from tensorflow.keras.applications import ResNet50
from tensorflow.keras.models import Model
from tensorflow.keras.optimizers import SGD
from sklearn.preprocessing import LabelBinarizer
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report
from imutils import paths
import matplotlib.pyplot as plt
import numpy as np
import argparse
import pickle
import cv2
import os
from sklearn.metrics import confusion_matrix
from sklearn.utils.multiclass import unique_labels
import efficientnet.keras as enet
from tensorflow.keras.layers import Dense, Dropout, Activation, BatchNormalization, Flatten, Input
这就是我的模型看起来像的样子
load the ResNet-50 network, ensuring the head FC layer sets are left
# off
baseModel = enet.EfficientNetB1(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)), pooling='avg')
# Adding 2 fully-connected layers to B0.
x = baseModel.output
x = BatchNormalization()(x)
x = Dropout(0.7)(x)
x = Dense(512)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
x = Dropout(0.5)(x)
x = Dense(512)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
# Output layer
predictions = Dense(len(lb.classes_), activation="softmax")(x)
model = Model(inputs = baseModel.input, outputs = predictions)
# loop over all layers in the base model and freeze them so they will
# *not* be updated during the training process
for layer in baseModel.layers:
layer.trainable = False
但就我的一生而言,我不明白为什么我会得到以下错误
AttributeError Traceback (most recent call last)
<ipython-input-19-269fe6fc6f99> in <module>()
----> 1 baseModel = enet.EfficientNetB1(weights="imagenet", include_top=False, input_tensor=Input(shape=(224, 224, 3)), pooling='avg')
2
3 # Adding 2 fully-connected layers to B0.
4 x = baseModel.output
5 x = BatchNormalization()(x)
5 frames
/usr/local/lib/python3.6/dist-packages/keras/engine/base_layer.py in _collect_previous_mask(input_tensors)
1439 inbound_layer, node_index, tensor_index = x._keras_history
1440 node = inbound_layer._inbound_nodes[node_index]
-> 1441 mask = node.output_masks[tensor_index]
1442 masks.append(mask)
1443 else:
AttributeError: 'Node' object has no attribute 'output_masks'
问题在于导入efficientnet的方式。
您可以从Keras
程序包而不是从TensorFlow.Keras
程序包导入它。
将您的efficientnet导入更改为
import efficientnet.tfkeras as enet
不确定,但这个错误可能是由错误的TF版本引起的。谷歌Colab现在默认配备TF1.x。尝试更改TF版本,看看这是否解决了问题。
try:
%tensorflow_version 2.x
except:
print("Failed to load")