我想在依赖于日期的另一个数据框中搜索值(来自一个数据框)
我有一个DatetimeIndex基于1分钟的频率的数据帧。我将Dataframe重新采样到每天5分钟的频率。下面是代码和输出:
agg_dict = {'open': 'first','high': 'max','low': 'min','cls': 'last','vol': 'sum'}
data_5min = data_rth.resample('5min').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
data_daily = data_rth.resample('D').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
data_weekly= data_rth.resample('W').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
data_monthly= data_rth.resample('M').agg(agg_dict).dropna().round(2).sort_index(ascending=False)
print('data_daily','n',data_daily['high'].head())
print('data_5min','n',data_5min['high'].head(24))
output:
data_daily
time
2021-08-05 441.85
2021-08-04 441.12
2021-08-03 441.28
2021-08-02 440.93
2021-07-30 440.06
Name: high, dtype: float64
data_5min
time
2021-08-05 16:00:00 441.85
2021-08-05 15:55:00 441.65
2021-08-05 15:50:00 441.39
2021-08-05 15:45:00 441.23
2021-08-05 15:40:00 441.24
2021-08-05 15:35:00 441.11
2021-08-05 15:30:00 440.90
2021-08-05 15:25:00 440.83
2021-08-05 15:20:00 440.78
2021-08-05 15:15:00 440.86
2021-08-05 15:10:00 440.94
2021-08-05 15:05:00 440.96
2021-08-05 15:00:00 440.89
2021-08-05 14:55:00 440.83
2021-08-05 14:50:00 440.87
2021-08-05 14:45:00 440.88
2021-08-05 14:40:00 440.96
2021-08-05 14:35:00 440.88
2021-08-05 14:30:00 440.86
2021-08-05 14:25:00 440.91
2021-08-05 14:20:00 440.96
2021-08-05 14:15:00 440.96
2021-08-05 14:10:00 440.98
2021-08-05 14:05:00 441.12
Name: high, dtype: float64
我现在想看看每天的高点在5分钟帧中显示在哪里。我试着
data_5min['high'].isin(data_daily['high'])
what gives me this output:
time
2021-08-05 16:00:00 True
2021-08-05 15:55:00 False
2021-08-05 15:50:00 False
2021-08-05 15:45:00 False
2021-08-05 15:40:00 False
2021-08-05 15:35:00 False
2021-08-05 15:30:00 False
2021-08-05 15:25:00 False
2021-08-05 15:20:00 False
2021-08-05 15:15:00 False
2021-08-05 15:10:00 False
2021-08-05 15:05:00 False
2021-08-05 15:00:00 False
2021-08-05 14:55:00 False
2021-08-05 14:50:00 False
2021-08-05 14:45:00 False
2021-08-05 14:40:00 False
2021-08-05 14:35:00 False
2021-08-05 14:30:00 False
2021-08-05 14:25:00 False
2021-08-05 14:20:00 False
2021-08-05 14:15:00 False
2021-08-05 14:10:00 False
2021-08-05 14:05:00 True
最后一行的True我不想要。看起来这是data_daily index 2021-08-04的值。我想要的是在data_5min中搜索data_daily中的每个值,但取决于日期。我试着
data_5min['高'].isin (data_daily['高']),data_5min.index.isin (data_daily.index.date)
但是我不让它工作。
如果能帮忙就太好了。
您可以仅使用data_5m
使用groupby
和DatetimeIndex
的.date
部分找到每天的峰值:
>>> data_5min.groupby(data_5min.index.date)['high'].idxmax()
time
2021-08-05 2021-08-05 16:00:00
Freq: D, Name: high, dtype: datetime64[ns]
为什么不直接找到5分钟系列的max
呢?
# Create Dummy Data
d = {'col1': [1, 2, 2.5, 5, 0, np.nan]}
df = pd.DataFrame(data=d)
print(df)
col1
0 1.0
1 2.0
2 2.5
3 5.0
4 0.0
5 NaN
# Create new column checking if value is equal to max in Series
df['bool'] = df['col1'] == df['col1'].max()
print(df)
输出:
col1 bool
0 1.0 False
1 2.0 False
2 2.5 False
3 5.0 True
4 0.0 False
5 NaN False
如果有多个天的数据,你已经有了重新采样的数据。你可以把这些合并到5分钟的DataFrame,并做一个bool检查,如果值是相等的。