tensorflow tensorboard hparams


import tensorflow as tf
from tensorboard.plugins.hparams import api as hp
####### load the model and data here
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
HP_NUM_UNITS = hp.HParam('num_units', hp.Discrete([32,64,128,256, 512]))
HP_DROPOUT = hp.HParam('dropout', hp.RealInterval(0.1, 0.9))
HP_OPTIMIZER = hp.HParam('optimizer', hp.Discrete(['Nadam','SGD','RMSprop','adam','Adagrad']))
HP_L2 = hp.HParam('l2 regularizer', hp.RealInterval(.00001,.01))
HP_LeakyReLU=hp.HParam('alpha', hp.RealInterval(0.1, 0.9))
METRIC_ACCURACY = 'accuracy'
with tf.summary.create_file_writer('raw-img/log/hparam_tuning/').as_default():
hp.hparams_config(
hparams=[HP_NUM_UNITS, HP_DROPOUT, HP_OPTIMIZER,HP_L2,HP_LeakyReLU],
metrics=[hp.Metric(METRIC_ACCURACY, display_name='Accuracy')],
)
def train_test_model(hparams):
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(),
tf.keras.layers.Dense(hparams[HP_NUM_UNITS], kernel_regularizer=tf.keras.regularizers.l2(0.001)),
tf.keras.layers.LeakyReLU(hparams[HP_LeakyReLU]),
tf.keras.layers.Dropout(hparams[HP_DROPOUT]),
tf.keras.layers.Dense(10, activation='softmax'),
])
model.compile(
optimizer=hparams[HP_OPTIMIZER],
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
)
model.fit(x_train, y_train, epochs=2)
_, accuracy = model.evaluate(x_test, y_test)
return accuracy
def run(run_dir, hparams):
with tf.summary.create_file_writer(run_dir).as_default():
hp.hparams(hparams)  # record the values used in this trial
accuracy = train_test_model(hparams)
tf.summary.scalar(METRIC_ACCURACY, accuracy, step=2)
session_num = 0
for num_units in HP_NUM_UNITS.domain.values:
for dropout_rate in (HP_DROPOUT.domain.min_value, HP_DROPOUT.domain.max_value):
for l2 in (HP_L2.domain.min_value, HP_L2.domain.max_value):
for alpha in (HP_LeakyReLU.domain.min_value, HP_LeakyReLU.domain.max_value):
for optimizer in HP_OPTIMIZER.domain.values:
hparams = {
HP_NUM_UNITS: num_units,
HP_DROPOUT: dropout_rate,
HP_L2: l2,
HP_LeakyReLU:alpha,
HP_OPTIMIZER: optimizer,
}
run_name = "run-%d" % session_num
print('--- Starting trial: %s' % run_name)
print({h.name: hparams[h] for h in hparams})
run('raw-img/log/hparam_tuning/' + run_name, hparams)
session_num += 1

我已经尝试在TF中使用hparams。我已经设置了dropout,l2OPTIMIZER

我需要设置learning_rate的值并测试它。我应该怎么做才能像dropoutl2一样设置learning_rate并进行测试?

我已经试过了:

model.compile(
optimizer=hparams[HP_OPTIMIZER](lr=0.001),
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],

但它不起作用。我想选择learning_rate不同的learning_rate值,如(dropout,l2)

您想要将所使用的优化器分离到一个单独的变量中:

if hparams[HP_OPTIMIZER] == "SGD":
optimizer = tf.keras.optimizers.SGD(learning_rate=float(hparams[HP_LR]))
elif hparams[HP_OPTIMIZER] == "adam":
optimizer = tf.keras.optimizers.Adam(learning_rate=float(hparams[HP_LR]))
else:
raise ValueError("unexpected optimizer name: %r" % hparams[HP_OPTIMIZER])
model.compile(
optimizer=optimizer,
loss='sparse_categorical_crossentropy',
metrics=['accuracy'],
)

我在这里找到了解决办法。

相关内容

  • 没有找到相关文章