CNN过滤器中有多少个参数?



卷积神经网络的每个过滤器中有多少个参数?我的书上说:

"在彩色图像中,每个滤镜本身就是一个3D滤镜。这意味着每个过滤器有许多参数:(height x width x depth) = (3 x 3 x 3 = 27)。你可以看到在处理彩色图像时网络的复杂性是如何增加的,因为它必须优化更多的参数…">

这听起来像是说2 X 2过滤器实际上是2 X 2 X 3,用于彩色图像。然而,Keras中的参数特征似乎第一次将过滤器计数为3D,但随后的次数仅将其计数为2D。

下面是我的输出数据:

tbody> <<tr>
图层(类型) 输出形状 参数#
conv2d (conv2d)(没有,32岁,32岁,16)208
max_pooling2d (MaxPooling2D)(16), 16日16日0
conv2d_1 (Conv2D)(32), 16日16日2080
max_pooling2d_1 (MaxPooling2(没有8 8,32)0
conv2d_2 (Conv2D)(64年没有8 8)8256
max_pooling2d_2 (MaxPooling2(64年没有4 4)0

在卷积中,当它们表示过滤器是(高度x宽度x深度)形状时,深度"是指来自前一个输入的通道数,它不一定是RGB图像(它可能来自前一个卷积)。

对于第二次卷积有2080个参数而不是6176个,输入深度实际上是16个通道而不是3个,因为你的第一次卷积将通道数量增加到16个,所以正确的计算将是(2 * 2 * 16 * 32)+ 32等于2080。

同样地,对于第三个卷积,由于它的输入从第二个卷积的输出有32个通道,它的参数数量将等于(2 * 2 * 32 * 64)+ 64,等于8256个参数。

相关内容

  • 没有找到相关文章

最新更新