r-如何使用插入符号包获得混淆矩阵



我试图分析caret包提供的混淆矩阵示例,即

lvs <- c("normal", "abnormal")
truth <- factor(rep(lvs, times = c(86, 258)),
levels = rev(lvs))
pred <- factor(
c(
rep(lvs, times = c(54, 32)),
rep(lvs, times = c(27, 231))),
levels = rev(lvs))
xtab <- table(pred, truth)
confusionMatrix(xtab)

然而,可以肯定的是,我不太理解它。让我们举个例子,这个非常简单的模型:

set.seed(42)
x <- sample(0:1, 100, T)
y <- rnorm(100)
glm(x ~ y, family = binomial('logit'))

我不知道我该如何为这个glm模型类似地执行混淆矩阵。你知道怎么做吗?

编辑

我试着运行评论中提供的一个示例:

train <- data.frame(LoanStatus_B = as.numeric(rnorm(100)>0.5), b= rnorm(100), c = rnorm(100), d = rnorm(100))
logitMod <- glm(LoanStatus_B ~ ., data=train, family=binomial(link="logit"))
library(caret)
# Use your model to make predictions, in this example newdata = training set, but replace with your test set    
pdata <- predict(logitMod, newdata = train, type = "response")
confusionMatrix(data = as.numeric(pdata>0.5), reference = train$LoanStatus_B)

但我的增益误差:数据and参考"应该是具有相同水平的因素

我是不是做错了什么?

您只需要将它们转化为因素:

confusionMatrix(data = as.factor(as.numeric(pdata>0.5)), 
reference = as.factor(train$LoanStatus_B))
# Confusion Matrix and Statistics
# 
# Reference
# Prediction  0  1
#          0 61 31
#          1  2  6
# 
# Accuracy : 0.67            
# 95% CI : (0.5688, 0.7608)
# No Information Rate : 0.63            
# P-Value [Acc > NIR] : 0.2357          
# 
# Kappa : 0.1556          
# 
# Mcnemar's Test P-Value : 1.093e-06       
#                                           
#             Sensitivity : 0.9683          
#             Specificity : 0.1622          
#          Pos Pred Value : 0.6630          
#          Neg Pred Value : 0.7500          
#              Prevalence : 0.6300          
#          Detection Rate : 0.6100          
#    Detection Prevalence : 0.9200          
#       Balanced Accuracy : 0.5652          
#                                           
#        'Positive' Class : 0               

相关内容

  • 没有找到相关文章

最新更新