我正在尝试集成一个具有实值和复数值的表达式,该表达式将其定义为lambda表达式。积分变量是kx,积分的最终解将在x和y维度上进行评估,但在我积分并尝试评估积分后,我得到以下错误:
File "/opt/tools/anaconda/2020.11/lib/python3.8/site-packages/scipy/integrate/quadpack.py", line 351, in quad
retval = _quad(func, a, b, args, full_output, epsabs, epsrel, limit,
File "/opt/tools/anaconda/2020.11/lib/python3.8/site-packages/scipy/integrate/quadpack.py", line 463, in _quad
return _quadpack._qagse(func,a,b,args,full_output,epsabs,epsrel,limit)
TypeError: <lambda>() missing 2 required positional arguments: 'x' and 'y'
这是我正在使用的代码:
import numpy as np
from scipy import integrate
import matplotlib.pyplot as plt
"Constants and parameters"
f = 8500 # Source frequency [Hz]
rho = 1.225 # Density of air [kg/m^3]
c0 = 343 # Speed of sound [m/s]
omega = 2*np.pi*f # Angular velocity [rad/s]
k = omega/c0 # Wave number [rad/m]
Z = -426 # Impedance
"Domain parameters"
Lx = 0.1 # Total x-dimension [m]
Ly = 0.1 # Total y-dimension [m]
nx = 50 # Number of points to discretize the domain in x
ny = int(nx/2) # Number of points to discretize the domain in y
integrandReal = lambda kx, x, y: np.real(((2*np.sqrt(k**2 - kx**2)*Z)/(np.sqrt(k**2 - kx**2)*Z + omega*rho))*((np.exp(1j*(kx*x + np.sqrt(k**2 - kx**2)*y)))/(np.sqrt(k^2 - kx^2))))
integrandImag = lambda kx, x, y: np.imag(((2*np.sqrt(k**2 - kx**2)*Z)/(np.sqrt(k**2 - kx**2)*Z + omega*rho))*((np.exp(1j*(kx*x + np.sqrt(k**2 - kx**2)*y)))/(np.sqrt(k**2 - kx**2))))
integral = lambda x, y: integrate.quad(integrandReal, -100*k, 100*k) + 1j*integrate.quad(integrandImag-100*k, 100*k)
G = integral(1,1)
如果有人能帮助我,我将不胜感激。
- 您在最后一个lambda中忘记了逗号
- 您的lambda有三个参数,quad在第一个参数上集成,您必须用
args=(x,y)
传递其他参数。示例中的集成限制是-100*k
到+100*k
- 存在一些预期CCD_ 5的CCD_
- quad返回一个具有整数值和积分误差的元组,因此您对输出的第一个元素感兴趣,可以使用
[0]
获得它
integrandReal = lambda kx, x, y: np.real(((2*np.sqrt(k**2 - kx**2)*Z)/(np.sqrt(k**2 - kx**2)*Z + omega*rho))*((np.exp(1j*(kx*x + np.sqrt(k**2 - kx**2)*y)))/(np.sqrt(k**2 - kx**2))))
integrandImag = lambda kx, x, y: np.imag(((2*np.sqrt(k**2 - kx**2)*Z)/(np.sqrt(k**2 - kx**2)*Z + omega*rho))*((np.exp(1j*(kx*x + np.sqrt(k**2 - kx**2)*y)))/(np.sqrt(k**2 - kx**2))))
integral = lambda x, y: integrate.quad(integrandReal, -100*k, 100*k, args=(1,1))[0] + 1j*integrate.quad(integrandImag,-100*k, 100*k, args=(1,1))[0]
G = integral(1,1)