在数据集中运行不同的Scikit-learn聚类算法



我有一个像下面这样的数据框架。形状为(24,7)

Name   x1   x2   x3    x4    x5    x6
Harry  102  204  0.43  0.21  1.02  0.39
James  242  500  0.31  0.11  0.03  0.73
.
.
.
Mike   3555 4002 0.12  0.03  0.52. 0.11
Henry  532  643  0.01  0.02  0.33  0.10

我想在上述数据框架上运行Scikit-learn的不同聚类算法脚本。然而,输入数据看起来很混乱,不太确定如何输入我的dataframe

https://scikit-learn.org/stable/auto_examples/cluster/plot_cluster_comparison.html sphx-glr-auto-examples-cluster-plot-cluster-comparison-py

您的场景和您链接到的scikit-learn示例之间有两个主要区别:

  1. 你只有一个数据集,而不是几个不同的数据集来比较。
  2. 你有六个功能,而不是两个。

第一点允许您通过删除不同数据集和相关计算上的循环来简化示例代码。第二点意味着你不能轻易地绘制出你的结果。相反,您可以将每个算法找到的预测类标签添加到您的数据集中。

所以你可以这样修改示例代码:
import time
import warnings
import numpy as np
import pandas as pd
from sklearn import cluster, datasets, mixture
from sklearn.neighbors import kneighbors_graph
from sklearn.preprocessing import StandardScaler
from itertools import cycle, islice
np.random.seed(0)
# ============
# Introduce your dataset
# ============
my_df =  # Insert your data here, as a pandas dataframe. 
features = [f'x{i}' for i in range(1, 7)]
X = my_df[features].values
# ============
# Set up cluster parameters
# ============
params = {
"quantile": 0.3,
"eps": 0.3,
"damping": 0.9,
"preference": -200,
"n_neighbors": 3,
"n_clusters": 3,
"min_samples": 7,
"xi": 0.05,
"min_cluster_size": 0.1,
}
# normalize dataset for easier parameter selection
X = StandardScaler().fit_transform(X)
# estimate bandwidth for mean shift
bandwidth = max(cluster.estimate_bandwidth(X, quantile=params["quantile"]),
0.001)  # arbitrary correction to avoid 0
# connectivity matrix for structured Ward
connectivity = kneighbors_graph(
X, n_neighbors=params["n_neighbors"], include_self=False
)
# make connectivity symmetric
connectivity = 0.5 * (connectivity + connectivity.T)
# ============
# Create cluster objects
# ============
ms = cluster.MeanShift(bandwidth=bandwidth, bin_seeding=True)
two_means = cluster.MiniBatchKMeans(n_clusters=params["n_clusters"])
ward = cluster.AgglomerativeClustering(
n_clusters=params["n_clusters"], linkage="ward", connectivity=connectivity
)
spectral = cluster.SpectralClustering(
n_clusters=params["n_clusters"],
eigen_solver="arpack",
affinity="nearest_neighbors",
)
dbscan = cluster.DBSCAN(eps=params["eps"])
optics = cluster.OPTICS(
min_samples=params["min_samples"],
xi=params["xi"],
min_cluster_size=params["min_cluster_size"],
)
affinity_propagation = cluster.AffinityPropagation(
damping=params["damping"], preference=params["preference"], random_state=0
)
average_linkage = cluster.AgglomerativeClustering(
linkage="average",
affinity="cityblock",
n_clusters=params["n_clusters"],
connectivity=connectivity,
)
birch = cluster.Birch(n_clusters=params["n_clusters"])
gmm = mixture.GaussianMixture(
n_components=params["n_clusters"], covariance_type="full"
)
clustering_algorithms = (
("MiniBatchnKMeans", two_means),
("AffinitynPropagation", affinity_propagation),
("MeanShift", ms),
("SpectralnClustering", spectral),
("Ward", ward),
("AgglomerativenClustering", average_linkage),
("DBSCAN", dbscan),
("OPTICS", optics),
("BIRCH", birch),
("GaussiannMixture", gmm),
)
for name, algorithm in clustering_algorithms:
t0 = time.time()
# catch warnings related to kneighbors_graph
with warnings.catch_warnings():
warnings.filterwarnings(
"ignore",
message="the number of connected components of the "
+ "connectivity matrix is [0-9]{1,2}"
+ " > 1. Completing it to avoid stopping the tree early.",
category=UserWarning,
)
warnings.filterwarnings(
"ignore",
message="Graph is not fully connected, spectral embedding"
+ " may not work as expected.",
category=UserWarning,
)
algorithm.fit(X)
t1 = time.time()
if hasattr(algorithm, "labels_"):
y_pred = algorithm.labels_.astype(int)
else:
y_pred = algorithm.predict(X)
# Add cluster labels to the dataset
my_df[name] = y_pred

PS:请替换:data = X_data。iloc[:20000] by your X

import numpy as np
import matplotlib as plt
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
from sklearn import decomposition
from sklearn import preprocessing
from sklearn import cluster, metrics
from scipy.cluster.hierarchy import linkage, fcluster
from sklearn import preprocessing
from collections import Counter
from sklearn.cluster import DBSCAN
from sklearn import mixture
from sklearn.preprocessing import StandardScaler
from sklearn import metrics
from sklearn.cluster import KMeans
from sklearn.metrics import silhouette_samples, silhouette_score
comp_model = pd.DataFrame(columns=['Model', 'Score_Silhouette',
'num_clusters', 'size_clusters',
'parameters'])

k - means:

def k_means(X_data, nb_clusters, model_comp):
ks = nb_clusters
inertias = []
data = X_data.iloc[:20000]
X = data.values
X_scaled = preprocessing.StandardScaler().fit_transform(X)
for num_clusters in ks:
# Create a KMeans instance with k clusters: model
model = KMeans(n_clusters=num_clusters, n_init=1)
# Fit model to samples
model.fit(X_scaled)
# Append the inertia to the list of inertias
inertias.append(model.inertia_)
silh = metrics.silhouette_score(X_scaled, model.labels_)
# Counting the amount of data in each cluster
taille_clusters = Counter(model.labels_)
data = [{'Model': 'kMeans',
'Score_Silhouette': silh,
'num_clusters': num_clusters,
'size_clusters': taille_clusters,
'parameters': 'nb_clusters :'+str(num_clusters)}]
model_comp = model_comp.append(data, ignore_index=True, sort=False)
# Plot ks vs inertias
plt.plot(ks, inertias, '-o')
plt.xlabel('number of clusters, k')
plt.ylabel('inertia')
plt.xticks(ks)
plt.show()
return model_comp
comp_model = k_means(X_data=df,
nb_clusters=pd.np.arange(2, 11, 1),
model_comp=comp_model)

DBscan:

def dbscan_grid_search(X_data, model_comp, eps_space=0.5,
min_samples_space=5, min_clust=0, max_clust=10):
data = X_data.iloc[:20000]
X = data.values
X_scaled = preprocessing.StandardScaler().fit_transform(X)
# Starting a tally of total iterations
n_iterations = 0
# Looping over each combination of hyperparameters
for eps_val in eps_space:
for samples_val in min_samples_space:
dbscan_grid = DBSCAN(eps=eps_val,
min_samples=samples_val)
# fit_transform
clusters = dbscan_grid.fit_predict(X=X_scaled)
# Counting the amount of data in each cluster
cluster_count = Counter(clusters)
#n_clusters = sum(abs(pd.np.unique(clusters))) - 1
n_clusters = len(set(clusters)) - (1 if -1 in clusters else 0)
# Increasing the iteration tally with each run of the loop
n_iterations += 1
# Appending the lst each time n_clusters criteria is reached
if n_clusters >= min_clust and n_clusters <= max_clust:
silh = metrics.silhouette_score(X_scaled, clusters)
data = [{'Model': 'Dbscan',
'Score_Silhouette': silh,
'num_clusters': n_clusters,
'size_clusters': cluster_count,
'parameters': 'eps :'+str(eps_val)+'+ samples_val :'+str(samples_val)}]
model_comp = model_comp.append(
data, ignore_index=True, sort=False)
return model_comp
comp_model = dbscan_grid_search(X_data=df,
model_comp=comp_model,
eps_space=pd.np.arange(0.1, 5, 0.6),
min_samples_space=pd.np.arange(1, 30, 3),
min_clust=2,
max_clust=10)

GMM:

def gmm(X_data, nb_clusters, model_comp):
ks = nb_clusters
data = X_data.iloc[:20000]
X = data.values
X_scaled = preprocessing.StandardScaler().fit_transform(X)
for num_clusters in ks:
# Create a KMeans instance with k clusters: model
gmm = mixture.GaussianMixture(n_components=num_clusters).fit(X_scaled)
# Fit model to samples
gmm.fit(X_scaled)
pred = gmm.predict(X_scaled)
cluster_count = Counter(pred)
silh = metrics.silhouette_score(X_scaled, pred)
data = [{'Model': 'GMM',
'Score_Silhouette': silh,
'num_clusters': num_clusters,
'size_clusters': cluster_count,
'parameters': 'nb_clusters :'+str(num_clusters)}]
model_comp = model_comp.append(data, ignore_index=True, sort=False)
return model_comp
comp_model = gmm(X_data=df,
nb_clusters=pd.np.arange(2, 11, 1),
model_comp=comp_model
)

最后你将得到comp_model,它将包含你的算法的所有结果。这里我使用了三种算法,在你选择了最适合你的算法之后(有分数轮廓和集群数量)。

你应该检查每个集群的重分区:https://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html sphx-glr-auto-examples-cluster-plot-kmeans-silhouette-analysis-py

最新更新