示例数据帧
df <- data.frame(countrycode=c("A","B","C"),
hdi_1999 = c(0.7, 0.8, 0.6),
hdi_2000 = c(0.71, 0.81, 0.61),
hdi_2001 = c(0.72, 0.82, 0.62),
icrg_1999 = c(60, 50, 70),
icrg_2000 = c(61, 51, 71),
icrg_2001 = c(62, 52, 72))
我需要的是具有唯一国家代码-年的4列,其中年是_
1999 2000 2001之后的数字。
countrycode year hdi icrg
我的代码是
df_new <- df %>%
pivot_longer(cols = starts_with("hdi"),
names_to = c("hdi", "year"),
names_sep = "_",
values_to = "hdi_value",
names_repair = "unique") %>%
pivot_longer(cols = starts_with("icrg"),
names_to = c("icrg", "year"),
names_sep = "_",
values_to = "icrg_value",
names_repair = "unique")
其结果不是唯一的国家-年份对
我们可以简单地在pivot_longer
中执行此操作
library(tidyr)
pivot_longer(df, cols = -countrycode,
names_to = c(".value", "year"), names_pattern = "(.*)_(\d{4})$")
与产出
# A tibble: 9 × 4
countrycode year hdi icrg
<chr> <chr> <dbl> <dbl>
1 A 1999 0.7 60
2 A 2000 0.71 61
3 A 2001 0.72 62
4 B 1999 0.8 50
5 B 2000 0.81 51
6 B 2001 0.82 52
7 C 1999 0.6 70
8 C 2000 0.61 71
9 C 2001 0.62 72
usingreshape
.
df |> reshape(idvar=1, direction='long', varying=list(2:4, 5:7), sep=' ',
v.names=c('hdi', 'icrg'), times=1999:2001)
# countrycode time icrg hdi
# A.1999 A 1999 0.70 60
# B.1999 B 1999 0.80 50
# C.1999 C 1999 0.60 70
# A.2000 A 2000 0.71 61
# B.2000 B 2000 0.81 51
# C.2000 C 2000 0.61 71
# A.2001 A 2001 0.72 62
# B.2001 B 2001 0.82 52
# C.2001 C 2001 0.62 72