如何使用Flink MiniCluster触发ProcessTimeTimer



我有一个FlinkKeyedCoProcessFunction,它在一个更大的Flink流作业中注册处理时间计时器,我正试图使用Flink MiniCluster为整个作业创建单元测试。但我无法在KeyedCoProcessFunction中获得onTimer()调用以触发。

有人用过这个吗?它需要任何特殊配置吗?

切换到事件时间工作得很好,所以我想知道这是否只是Flink MiniCluster不起作用,或者我的实现有问题。

我用Scala写了一个简单的测试,看看我是否能让它发挥作用。

import org.apache.flink.api.common.typeinfo.TypeInformation
import org.apache.flink.runtime.testutils.MiniClusterResourceConfiguration
import org.apache.flink.streaming.api.TimeCharacteristic
import org.apache.flink.streaming.api.functions.KeyedProcessFunction
import org.apache.flink.streaming.api.functions.source.{ParallelSourceFunction, SourceFunction}
import org.apache.flink.streaming.api.scala.StreamExecutionEnvironment
import org.apache.flink.test.streaming.runtime.util.TestListResultSink
import org.apache.flink.test.util.MiniClusterWithClientResource
import org.apache.flink.util.Collector
import org.scalatest.BeforeAndAfter
import org.scalatest.flatspec.AnyFlatSpec
import org.slf4j.LoggerFactory
class TimerTest extends AnyFlatSpec with BeforeAndAfter {
private val SlotsPerTaskMgr = 1
val flinkCluster = new MiniClusterWithClientResource(new MiniClusterResourceConfiguration.Builder()
.setNumberSlotsPerTaskManager(SlotsPerTaskMgr)
.setNumberTaskManagers(1)
.build)
before {
flinkCluster.before()
}
after {
flinkCluster.after()
}
"MiniCluster" should "trigger onTimer" in {
val env = StreamExecutionEnvironment.getExecutionEnvironment
env.setParallelism(1)
env.setStreamTimeCharacteristic(TimeCharacteristic.ProcessingTime)
implicit val longTypeInfo: TypeInformation[Long] = TypeInformation.of(classOf[Long])
val sink = new TestListResultSink[Long]
env.addSource(new MyLongSource(100))
.keyBy(v => v)
.process(new MyProccesor())
.addSink(sink)
env.execute()
println("Received " + sink.getResult.size() + " output records.")
}
}
class MyProccesor extends KeyedProcessFunction[Long, Long, Long] {
private val log = LoggerFactory.getLogger(this.getClass)
override def processElement(
value: Long,
ctx: KeyedProcessFunction[Long, Long, Long]#Context,
out: Collector[Long]): Unit = {
log.info("Received {} at {}", value, ctx.timerService().currentProcessingTime())
if (value % 10 == 0) {
log.info("Scheduling processing timer for {}", ctx.timerService().currentProcessingTime() + 10)
ctx.timerService().registerProcessingTimeTimer(ctx.timerService().currentProcessingTime() + 10)
}
}
override def onTimer(
timestamp: Long,
ctx: KeyedProcessFunction[Long, Long, Long]#OnTimerContext,
out: Collector[Long]): Unit = {
log.info("Received onTimer at {}", timestamp)
out.collect(timestamp)
}
}
class MyLongSource(n:Int) extends ParallelSourceFunction[Long] {
@volatile private var stop = false
override def run(ctx: SourceFunction.SourceContext[Long]): Unit = {
for(i <- 1 to n) {
if(stop) return;
println("Sending " + i)
ctx.collect(i)
}
Thread.sleep(1000)
}
override def cancel(): Unit = {
stop = true
}
}

通过在源run()方法的末尾添加Thread.sleep(1000),我终于能够得到一些一致的结果。似乎一旦源退出,消息就会得到处理,然后即使有挂起的计时器,一切都会关闭。

当Flink作业关闭时,任何挂起的处理时间计时器都将被忽略。他们从不开火。

值得一提的是,Flink dev邮件列表上正在讨论提供一个触发所有挂起的处理时间计时器的选项。看见http://apache-flink-user-mailing-list-archive.2336050.n4.nabble.com/DISCUSS-FLIP-134-DataStream-Semantics-for-Bounded-Input-td37365.html#a37558.

相关内容

  • 没有找到相关文章

最新更新