我试图在一个简单的.net核心Api中应用Flyweight方法模式,看看与不使用该模式相比节省了多少内存。
我有两种方法,第一种方法在不使用图案的情况下创建5000个对象,另一种方法使用图案创建5000个物体。在他们每个人创建对象后,他们调用一个方法,返回应用程序使用的当前内存。
public class MemoryService : IMemoryService
{
private readonly TreeFactory _treeFactory;
public MemoryService()
{
_treeFactory = new TreeFactory();
}
//create without pattern
public long SetObjectsMemory()
{
List<Tree> trees = new List<Tree>();
for (int i = 0; i < 5000; i++)
{
var tree = new Tree()
{
Id = new Random().Next(1, 9999999),
Part = new PartTree()
{
Name = "Nameany",
Bark = "Barkany",
Color = "Colorany"
}
};
trees.Add(tree);
};
return Utilities.GetCurrentMemoryUsed();
}
//crete with flyweight pattern
public long SetObjectsMemoryFactory()
{
List<Tree> trees = new List<Tree>();
for (int i = 0; i < 5000; i++)
{
var tree = new Tree()
{
Id = new Random().Next(1, 9999999),
Part = _treeFactory.GetPartTree("Nameany", "Barkany", "Colorany")
};
trees.Add(tree);
}
return Utilities.GetCurrentMemoryUsed();
}
}
我像使用零件列表的类一样使用该模式,并在存在的情况下返回零件对象。
public class TreeFactory
{
private static List<PartTree> _parts;
public TreeFactory() {
_parts = new List<PartTree>();
}
public PartTree GetPartTree(string name, string bark, string color)
{
if (_parts.Any(x => x.Name == name && x.Bark == bark && x.Color == color))
{
return _parts.Where(x => x.Name == name && x.Bark == bark && x.Color == color).FirstOrDefault();
}
else {
var newpart = new PartTree()
{
Name = name,
Bark = bark,
Color = color
};
_parts.Add(newpart);
return newpart;
}
}
}
获取应用程序使用的当前内存的方法是使用这种方式的进程(在实用程序类中(:
public static long GetCurrentMemoryUsed() {
Int64 memory;
using (Process proc = Process.GetCurrentProcess())
{
memory = proc.PrivateMemorySize64 / (1024 * 1024);
}
return memory;
}
在我的Startup中,我像Singleton一样注入MemoryService。在控制器中,我使用3种方法来调用函数:
[HttpGet, Route(nameof(WeatherForecastController.GenerateMemory))]
public IActionResult GenerateMemory()
{
var total=_memoryService.SetObjectsMemory();
return Ok(total);
}
[HttpGet, Route(nameof(WeatherForecastController.GenerateLiftMemory))]
public IActionResult GenerateLiftMemory()
{
var total = _memoryService.SetObjectsMemoryFactory();
return Ok(total);
}
[HttpGet, Route(nameof(WeatherForecastController.GetMemory))]
public IActionResult GetMemory()
{
var total = Utilities.GetCurrentMemoryUsed();
return Ok(total);
}
问题是:当我在导航器中调用控制器中没有模式(/wweatherForecast/GenerateMemory(的方法时,它会返回(当前(+2mb,但当我调用该方法时模式为(/wweatherForecast/GenerateLiftMemory(,返回(当前(+3mb。
为什么带模式flyweight的方法比不带模式的方法返回更多的MB(增长(
带有测试代码的存储库。Gitlab存储库内存api
使用TreeFactory
的代码消耗更多内存,因为它的GetPartTree
方法在循环中调用了多次,而Linq
方法在其中调用了Any
和Where
。这两种方法都在引擎盖下创建了额外的Iterator
对象,以便在集合中迭代,这会导致额外的内存消耗。
我使用BenchmarkDotNet编写了简单的基准测试,并提供了更多选项来演示问题
扩展内存服务
public class MemoryService : IMemoryService
{
private const int TreeCount = 50000;
private readonly TreeFactory _treeFactory;
public MemoryService()
{
_treeFactory = new TreeFactory();
}
//crea objetos en memoria sin patrones
public decimal SetObjectsMemory()
{
List<Tree> trees = new List<Tree>();
for (int i = 0; i < TreeCount; i++)
{
var tree = new Tree()
{
Id = 1,
Part = new PartTree()
{
Name = "Nameany",
Bark = "Barkany",
Color = "Colorany"
}
};
trees.Add(tree);
};
return Utilities.GetCurrentMemoryUsed();
}
//crea objetos en memoria usando patron flyweight
public decimal SetObjectsMemoryFactory()
{
List<Tree> trees = new List<Tree>();
for (int i = 0; i < TreeCount; i++)
{
var tree = new Tree()
{
Id = 1,
Part = _treeFactory.GetPartTree("Nameany", "Barkany", "Colorany")
};
trees.Add(tree);
}
return Utilities.GetCurrentMemoryUsed();
}
public decimal SetObjectsMemoryFactoryImproved()
{
List<Tree> trees = new List<Tree>();
for (int i = 0; i < TreeCount; i++)
{
var tree = new Tree()
{
Id = 1,
Part = _treeFactory.GetPartTreeImproved("Nameany", "Barkany", "Colorany")
};
trees.Add(tree);
}
return Utilities.GetCurrentMemoryUsed();
}
//crea objetos en memoria usando patron flyweight
public decimal SetObjectsMemoryFactoryWithoutLambda()
{
List<Tree> trees = new List<Tree>();
for (int i = 0; i < TreeCount; i++)
{
var tree = new Tree()
{
Id = 1,
Part = _treeFactory.GetPartTreeWithoutLambda("Nameany", "Barkany", "Colorany")
};
trees.Add(tree);
}
return Utilities.GetCurrentMemoryUsed();
}
}
扩展树工厂
public class TreeFactory
{
private static List<PartTree> _parts;
public TreeFactory()
{
_parts = new List<PartTree>();
}
public PartTree GetPartTree(string name, string bark, string color)
{
if (_parts.Any(x => x.Name == name && x.Bark == bark && x.Color == color))
{
return _parts.Where(x => x.Name == name && x.Bark == bark && x.Color == color).FirstOrDefault();
}
var newpart = new PartTree()
{
Name = name,
Bark = bark,
Color = color
};
_parts.Add(newpart);
return newpart;
}
public PartTree GetPartTreeImproved(string name, string bark, string color)
{
var existingPart = _parts.Where(x => x.Name == name && x.Bark == bark && x.Color == color).FirstOrDefault();
if (existingPart != null)
return existingPart;
var newpart = new PartTree()
{
Name = name,
Bark = bark,
Color = color
};
_parts.Add(newpart);
return newpart;
}
public PartTree GetPartTreeWithoutLambda(string name, string bark, string color)
{
for (int i = 0; i < _parts.Count; i++)
{
var x = _parts[i];
if (x.Name == name && x.Bark == bark && x.Color == color)
return x;
}
var newpart = new PartTree()
{
Name = name,
Bark = bark,
Color = color
};
_parts.Add(newpart);
return newpart;
}
}
在单独的控制台项目中进行基准测试
class Program
{
static void Main(string[] args)
{
var result = BenchmarkRunner.Run<MemoryBenchmark>();
}
}
[MemoryDiagnoser]
public class MemoryBenchmark
{
private IMemoryService memoryService;
[GlobalSetup]
public void Setup()
{
memoryService = new MemoryService();
}
[Benchmark]
public object SimpleTrees()
{
var trees = memoryService.SetObjectsMemory();
return trees;
}
[Benchmark]
public object FlyTrees()
{
var trees = memoryService.SetObjectsMemoryFactory();
return trees;
}
[Benchmark]
public object FlyTreesImproved()
{
var trees = memoryService.SetObjectsMemoryFactoryImproved();
return trees;
}
[Benchmark]
public object FlyTreesWithoutLambda()
{
var trees = memoryService.SetObjectsMemoryFactoryWithoutLambda();
return trees;
}
}
及其结果
方法 | 平均值 | 错误 | >StdDev:right;">已分配|||||||
---|---|---|---|---|---|---|---|---|---|
SimpleTrees | 9.040毫秒 | ||||||||
FlyTrees | 19.701毫秒 | FlyTrees改进 | 18.075毫秒 | 0.2869毫秒 | 0.2684毫秒 | >1781.2500 | 625.0000 | >312.5000/tr> | |
FlyTreeWithoutLambda | 4.919毫秒 | 0.0273毫秒 | 0.0242毫秒 | >421.8750 | >281.2500 | >281.2500 MB |