在实验设计中,我试图设计一个Graeco Latin-Square
,我认为它是Latin Square
设计的扩展版本,包含了更多因素。。然而,我发现它的行为很奇怪,下面是一些使用处理1和2模拟的片段,长度为1-26
graeco_design_possibility <- function(test_until=20){
library(agricolae)
k_graeco <- seq(2,test_until,1)
bool_possibility <- c()
for(n in 2:test_until){
b <- design.graeco(LETTERS[1:n], 1:n)
if(is.null(b)){
bool_possibility <- c(bool_possibility, FALSE)
}else{
bool_possibility <- c(bool_possibility, TRUE)
}
}
simulation_graeco <- data.frame(number_k = k_graeco, success_run=bool_possibility)
return(simulation_graeco)
}
当我测试这个时,模拟结果如下:(注意:在k=26之后会发生更多奇怪的错误(
g <- graeco_design_possibility(26)
g
number_k success_run
1 2 TRUE
2 3 TRUE
3 4 TRUE
4 5 TRUE
5 6 FALSE
6 7 TRUE
7 8 TRUE
8 9 TRUE
9 10 TRUE
10 11 TRUE
11 12 TRUE
12 13 TRUE
13 14 FALSE
14 15 TRUE
15 16 FALSE
16 17 TRUE
17 18 FALSE
18 19 TRUE
19 20 FALSE
20 21 TRUE
21 22 FALSE
22 23 TRUE
23 24 FALSE
24 25 TRUE
25 26 FALSE
这就是为什么,我看了一下文档,它说这个函数只适用于奇数和偶数(4、8、10和12(的平方我不太理解这个解释,因为模拟的结果与解释有点矛盾:6,14,16是偶数对吗?那么,为什么问题会以这种方式持续存在呢?
我删除了开发者在design.graeco()
函数中应该限制的限制,老实说,我不知道为什么在处理上应该限制特定的长度,这是Graeco Latin Square设计没有限制的最终结果
design_graeco_custom <- function(trt1, trt2, serie = 2, seed = 0, kinds = "Super-Duper", randomization = TRUE){
number <- 10
if (serie > 0)
number <- 10^serie
r <- length(trt1)
if (seed == 0) {
genera <- runif(1)
seed <- .Random.seed[3]
}
set.seed(seed, kinds)
parameters <- list(design = "graeco", trt1 = trt1,
trt2 = trt2, r = r, serie = serie, seed = seed, kinds = kinds,
randomization)
col <- rep(gl(r, 1), r)
fila <- gl(r, r)
fila <- as.character(fila)
fila <- as.numeric(fila)
plots <- fila * number + (1:r)
C1 <- data.frame(plots, row = factor(fila), col)
C2 <- C1
a <- 1:(r * r)
dim(a) <- c(r, r)
for (i in 1:r) {
for (j in 1:r) {
k <- i + j - 1
if (k > r)
k <- i + j - r - 1
a[i, j] <- k
}
}
m <- trt1
if (randomization)
m <- sample(trt1, r)
C1 <- data.frame(C1, m[a])
m <- trt2
if (randomization)
m <- sample(trt2, r)
C2 <- data.frame(C2, m[a])
ntr <- length(trt1)
C1 <- data.frame(C1, B = 0)
for (k in 1:r) {
x <- C1[k, 4]
i <- 1
for (j in 1:(r^2)) {
y <- C2[(k - 1) * r + i, 4]
if (C1[j, 4] == x) {
C1[j, 5] <- y
i <- i + 1
}
}
}
C1[, 4] <- as.factor(C1[, 4])
C1[, 5] <- as.factor(C1[, 5])
names(C1)[4] <- c(paste(deparse(substitute(trt1))))
names(C1)[5] <- c(paste(deparse(substitute(trt2))))
outdesign <- list(parameters = parameters,
sketch = matrix(paste(C1[,4], C1[,5]),
byrow = TRUE, ncol = r), book = C1)
return(outdesign)
}
我还发现,在26岁以上的治疗中,我决定使用额外的辅助功能来生成可能的字母:
letters_construction <- function(n=27, format_letter="upper"){
if(n > 26 && n <= 702){
letter_result <- NULL
letter_comb <- NULL
if(format_letter=="upper"){
letter_result <- LETTERS[1:26]
letter_comb <- expand.grid(LETTERS[1:26], LETTERS[1:26])
}else if(format_letter=="lower"){
letter_result <- letters[1:26]
letter_comb <- expand.grid(letters[1:26], letters[1:26])
}
letter_comb$comb <- paste0(letter_comb$Var2, letter_comb$Var1)
letter_finalcomb <- as.character(letter_comb$comb)
n_remainder <- n-26
letter_result <- c(letter_result, letter_finalcomb[1:n_remainder])
return(letter_result)
}
}
所以我可以像这样实现Big Graeco拉丁广场的设计:
b <- letters_construction(30)
design_graeco_custom(b, 1:30)