我有以下面板数据作为数据帧(称为回报(,其中包含2018-08-01至2019-12-31三种产品的每日观察结果和各自的每日回报:
structure(list(Product_Name = c("A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A", "A",
"A", "A", "A", "A", "A", "A", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B", "B",
"B", "B", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C", "C",
"C", "C", "C", "C", "C", "C", "C", "C", "C"), Date = structure(c(17744,
17745, 17746, 17749, 17750, 17751, 17752, 17753, 17756, 17757,
17759, 17760, 17774, 17777, 17778, 17779, 17780, 17781, 17784,
17785, 17786, 17787, 17788, 17791, 17792, 17793, 17794, 17795,
17798, 17799, 17800, 17801, 17802, 17805, 17806, 17807, 17808,
17809, 17812, 17813, 17814, 17815, 17816, 17819, 17820, 17821,
17822, 17823, 17826, 17827, 17828, 17829, 17830, 17833, 17834,
17835, 17837, 17840, 17841, 17842, 17843, 17844, 17847, 17848,
17849, 17850, 17851, 17854, 17855, 17856, 17857, 17858, 17861,
17862, 17863, 17872, 17875, 17876, 17877, 17878, 17879, 17882,
17883, 17884, 17885, 17886, 17892, 17893, 17896, 17898, 17899,
17900, 17903, 17904, 17905, 17906, 17907, 17910, 17911, 17912,
17913, 17914, 17917, 17918, 17919, 17920, 17921, 17925, 17926,
17927, 17928, 17931, 17932, 17933, 17934, 17935, 17938, 17939,
17940, 17941, 17942, 17945, 17946, 17947, 17948, 17949, 17952,
17953, 17963, 17966, 17967, 17968, 17969, 17970, 17973, 17974,
17975, 17976, 17977, 17980, 17981, 17982, 17983, 17984, 17987,
17988, 17989, 17990, 17991, 17994, 17995, 17996, 17997, 17998,
18001, 18002, 18003, 18004, 18009, 18010, 18011, 18012, 18015,
18016, 18018, 18019, 18022, 18023, 18024, 18026, 18029, 18030,
18031, 18032, 18033, 18036, 18037, 18038, 18039, 18040, 18043,
18044, 18045, 18086, 18087, 18088, 18089, 18092, 18093, 18094,
18095, 18096, 18099, 18100, 18101, 18102, 18103, 18106, 18107,
18108, 18109, 18110, 18113, 18114, 18115, 18116, 18117, 18120,
18121, 18122, 18124, 18127, 18128, 18129, 18130, 18131, 18134,
18135, 18136, 18137, 18138, 18141, 18142, 18143, 18144, 18145,
18148, 18149, 18150, 18151, 18152, 18155, 18156, 18157, 18158,
18159, 18162, 18163, 18228, 18229, 18232, 18233, 18234, 18235,
18236, 18239, 18240, 18241, 18242, 18243, 18246, 18247, 18248,
18249, 18250, 18253, 18257, 18260, 18261, 17744, 17745, 17746,
17749, 17750, 17751, 17752, 17753, 17756, 17757, 17759, 17760,
17763, 17764, 17765, 17766, 17767, 17770, 17771, 17772, 17773,
17774, 17777, 17778, 17779, 17780, 17781, 17784, 17785, 17786,
17787, 17788, 17791, 17792, 17793, 17794, 17795, 17798, 17799,
17800, 17801, 17802, 17805, 17806, 17807, 17808, 17809, 17812,
17813, 17814, 17815, 17816, 17819, 17820, 17821, 17822, 17869,
17870, 17871, 17872, 17875, 17876, 17877, 17878, 17879, 17882,
17883, 17884, 17885, 17886, 17892, 17893, 17896, 17898, 17899,
17900, 17903, 17904, 17905, 17906, 17907, 17910, 17911, 17912,
17913, 17914, 17917, 17918, 17919, 17920, 17921, 17924, 17925,
17926, 17927, 17928, 17931, 17932, 17933, 17934, 17935, 17938,
17939, 17940, 17941, 17942, 17945, 17946, 17947, 17948, 17949,
17952, 17953, 17954, 17955, 17956, 17959, 17960, 17961, 17962,
17963, 17966, 17967, 17968, 17969, 17970, 17973, 17974, 17975,
17976, 17977, 17980, 17981, 17982, 17983, 17984, 17987, 18107,
18108, 18109, 18110, 18113, 18114, 18115, 18116, 18117, 18120,
18121, 18122, 18124, 18127, 18128, 18129, 18130, 18131, 18134,
18135, 18136, 18137, 18138, 18141, 18142, 18143, 18144, 18145,
18148, 18149, 18150, 18151, 18152, 18155, 18156, 18157, 18158,
18159, 18162, 18163, 18164, 18165, 18166, 18169, 18170, 18171,
18172, 18173, 18176, 18177, 18178, 18179, 18180, 18183, 18184,
18185, 18186, 18187, 18190, 18191, 18192, 18193, 18194, 18197,
18198, 18199, 18200, 18204, 18205, 18206, 18207, 18208, 18211,
18212, 18213, 18214, 18215, 18218, 18219, 18220, 18221, 18222,
18225, 18226, 18227, 18228, 18229, 18232, 18233, 18234, 18235,
18236, 18239, 18240, 18241, 18242, 18243, 18246, 18247, 18248,
18249, 18250, 18253, 18257, 18260, 18261, 17744, 17745, 17774,
17777, 17778, 17779, 17780, 17781, 17784, 17785, 17786, 17787,
17788, 17791, 17792, 17793, 17794, 17795, 17798, 17799, 17800,
17801, 17802, 17805, 17806, 17807, 17808, 17809, 17812, 17813,
17814, 17815, 17816, 17819, 17820, 17821, 17822, 17823, 17826,
17827, 17868, 17869, 17870, 17871, 17872, 17875, 17876, 17877,
17878, 17879, 17882, 17883, 17884, 17885, 17886, 17892, 17893,
17896, 17898, 17899, 17900, 17903, 17904, 17905, 17906, 17907,
17910, 17911, 17912, 17913, 17914, 17917, 17918, 17919, 17920,
17921, 17924, 17925, 17926, 17927, 17928, 17931, 17932, 17933,
17934, 17935, 17938, 17939, 17940, 17941, 17942, 17945, 17946,
17947, 17948, 17949, 17952, 17953, 17954, 17955, 17956, 17959,
17960, 17961, 17962, 17963, 17966, 17968, 17969, 17970, 17973,
17974, 17975, 17976, 17977, 17980, 17981, 17982, 17983, 17984,
17987, 17988, 17989, 17990, 17991, 17994, 17995, 17997, 17998,
18001, 18002, 18003, 18024, 18026, 18029, 18030, 18031, 18032,
18033, 18036, 18037, 18038, 18039, 18040, 18043, 18044, 18045,
18047, 18050, 18051, 18052, 18053, 18054, 18058, 18059, 18060,
18061, 18064, 18065, 18066, 18067, 18068, 18071, 18072, 18073,
18074, 18075, 18078, 18079, 18080, 18081, 18082, 18085, 18086,
18087, 18088, 18089, 18092, 18093, 18116, 18117, 18120, 18121,
18122, 18124, 18127, 18128, 18129, 18130, 18131, 18134, 18135,
18136, 18137, 18138, 18141, 18142, 18143, 18144, 18145, 18148,
18179, 18180, 18183, 18184, 18185, 18186, 18187, 18190, 18191,
18192, 18193, 18194, 18197, 18198, 18199, 18200, 18204, 18205,
18206, 18207, 18208, 18211, 18212, 18213, 18214, 18215, 18218,
18219, 18220, 18221, 18222, 18225, 18226, 18248, 18249, 18250,
18253, 18257, 18260, 18261), class = "Date"), Return = c(NA,
-0.021053409, 0.005850216, -0.005968756, 0.012370563, 0.00076079,
-0.005278914, -0.023443687, -0.006765762, -0.002609779, -0.004019004,
-0.00158769, -0.008455835, -0.002497177, -0.009750922, 0.000480798,
-0.002948523, -0.00914133, 0.00883997, -0.002716327, 0.006266591,
0.001140627, 0.001798346, 0.005792617, 0.004989319, 0.005730675,
0.012411611, 0.002962965, -0.000638329, 0.005614903, -0.002600932,
-0.004582508, -0.020380701, 0.00041527, -0.00702342, 0.003815433,
-0.004771571, -0.012090009, -0.016596879, 0.002396683, -0.003812808,
-0.017966975, -0.003708014, 0.001949993, 0.012303812, -0.011487203,
-0.00838619, -0.008520972, -0.009431914, -0.015985785, -0.012325086,
0, -0.014293591, 0.016545844, -0.000198524, 0.013998191, 0.019901154,
-0.00249816, -0.000577386, 0.014398822, 0.000948377, -0.017853063,
-0.019554331, 0.011544987, -0.002207363, -0.013610994, -0.002572815,
-0.000528576, -0.020228334, 0.010799313, -0.005418617, -0.005110973,
0.024047787, -0.003957006, -0.001521013, 0.009014339, -0.025813257,
0.012712332, 0.022713434, -0.004011019, -0.010821282, -0.011636092,
-0.003000177, 0.005227039, -0.020648251, -0.001420253, -0.024603788,
0.026165955, 0.00453066, -0.009295792, -0.002712737, 0.033253213,
0.010181706, 0.004030198, 0.013743827, 0.004026311, -0.002279585,
-0.002621233, -0.004248868, 0.009149687, -0.004564379, 0.014692397,
-0.005051187, -0.00937214, 0.002149961, -0.000201363, 0.015784018,
0.003196806, 0.005702177, 0.000859135, 0.002770633, -0.007140054,
0.006678815, 0.003946595, -0.028296552, -0.010249538, 0.007680059,
0.006882154, 0.003356384, -0.002684205, 0.01480718, 0.009291971,
0.002489519, 0.008535088, -0.008404232, -0.001636929, 0.006075869,
0.012042098, -0.014874304, 0.009003445, 0.006781013, 0.015283225,
0.006887782, 0.001206847, 0.006643282, 0.004404462, -0.010793856,
-0.00547284, -0.024482055, -0.003209435, -0.00256183, 0.003152091,
-0.009751033, 0.006270027, 0.01592619, 0.003555157, 0.017778815,
-0.00019018, 0.001900178, 0.001580728, -0.005384701, 0.001206158,
0.006450411, 0.010596707, 0.004729024, 0.003408425, 0.007027956,
-0.004001113, -0.004017187, -0.005713591, -0.009386215, 0.003577148,
0.005310687, 0.005592508, -0.002792345, 0.002110491, -0.009970794,
-0.023381391, 0.001665493, -0.015025271, -0.02140875, 0.007999778,
-0.000856418, 0.007419844, -0.011646784, -0.009442815, 0.011558518,
-0.014971834, -0.020522919, 0.006548008, 0.00040783, 0.000950958,
-0.016152565, -0.01084645, 0.001980852, 0.001779419, 0.004139704,
-0.002823655, 0.000394477, -0.011304037, -0.007272759, -0.00127316,
0.000268168, 0.00741313, 0.000266117, 0.003187889, -0.002057682,
-0.004662013, -0.019821319, -0.000272405, -0.009099991, -0.027454344,
-0.019907189, -0.003682182, -0.002607375, 0.015257583, -0.013229038,
-0.011867199, 0.00707903, -0.022801812, 0.005564432, 0.015636215,
-0.014600942, 0.009123077, 0.006278768, -0.009065715, 7.34403e-05,
0.002420509, -0.006688988, 0.015950002, 0.003622667, -0.005802584,
-0.004374141, 0.01974962, 0.023083939, -0.003154908, 0.0140155,
0.017910927, 0.006980949, -0.002163625, 0.026780458, -0.011065945,
-0.010246883, -0.000673401, 0.005910421, -0.001809713, -0.016095566,
-0.009865797, 0.001211851, -0.010895448, -0.008932676, -0.011904124,
0.015344234, 0.004267432, 0.010334185, 0.003696862, -0.004080077,
0.002488278, 0.018248336, 0.020866984, 0.016108302, -0.011889015,
-0.00293327, 0.000672968, -0.003246657, 0.001103821, 0.008786974,
-0.001459144, 0.001762865, NA, -0.01065063, -0.00274148, 0.000670834,
-0.006667303, -0.004551893, -0.004820478, 0.000866927, -0.004280005,
-0.008113888, 0.002316047, 0, -0.001251251, -0.006468856, -0.005560133,
-0.010893562, 0.005174904, -0.023794526, 0.00410277, 0.00220722,
-0.006505781, -0.00858712, -0.003429178, 0.018197792, 0.007560862,
0.002122256, -0.003410666, -0.006791527, 0.011550378, 0.010974397,
-0.000190386, -0.000952472, 0.002981384, -0.013197935, -0.000385159,
-0.001735052, -0.003543704, -0.041782567, -0.023285366, -0.00255199,
-0.03128543, -0.033547794, 0.001104688, 0.007990952, 0.003935291,
-0.02206134, -0.026216191, -0.096402296, -0.010137791, -0.011357451,
-0.166406282, 0.011596964, -0.065889611, 0.005659687, -0.053475813,
0.001234915, 0.015363363, 0.017395049, -0.023743666, 0.001157296,
-0.04202754, -0.022671636, 0.007988572, 0.061230495, -0.0014403,
0.01136973, -0.020346191, 0.012333939, 0.040354542, 0.023273778,
0.010103354, -0.027416272, 0.05738697, 0.045813402, 0.008049325,
0.041737805, 0.014333812, -0.02943351, -0.016950239, -0.062256431,
0.001550789, -0.000258298, 0.031780989, -0.00443089, -0.008245041,
-0.007547206, -0.000170256, -0.016567614, 0.005180017, -0.011083324,
0.019401341, -0.00068341, 0.00230464, 0.022342117, -0.006356662,
0.028210499, -0.009672207, -0.011098342, -0.018238098, 0.019070599,
0.015932974, -0.003527919, 0.020419664, 0.002653908, -0.004830538,
0.003383825, 0.016116513, -0.003488468, -0.003341292, -0.006555828,
0.003523104, -0.006012765, -0.002818378, -0.030041138, -0.007674379,
0.016032241, 0.009513727, 0.026262183, -0.010309782, -0.006528333,
0.016758601, 0.026366876, 0.008636698, -0.012827624, -0.011577101,
0.00400456, 0.002191782, 0.006779687, -0.020240747, -0.008835878,
0.022765982, -0.007846254, 0.0101102, -0.009795165, 0.01554901,
-0.002950542, -0.010003209, 0.004733585, 0.025828207, 0.005024669,
0.00241031, 0.003389312, -0.009146594, 0.008223375, 0.005587807,
0.033715794, 0.015916702, -0.002391857, -0.015421141, 0.01699691,
-0.006552797, 0.004918619, -0.017143782, 0.003973319, -0.009275842,
0.001313355, 0.005236237, -0.009840545, -0.024757044, 0.012151708,
-0.017758106, 0.008122122, -0.008616498, 0.005486221, 0.007654895,
0.00935097, 0.004221706, 0.005042633, 0.007338278, 0.000891239,
0.0040895, 0.001654749, 0.003830858, 0.022221844, 0.002929774,
-0.012409614, -0.010450514, 0.01444994, 0.007893792, 0.004866468,
0.009888692, 0.007100221, -0.023176272, 0.00977905, 0.00335199,
0.013128798, -0.007416598, -0.005371949, 0.015471911, 0.001171712,
0.002339313, 0.004385363, 0.005523655, -0.006576608, 0.003155537,
0.00342107, 0.00948446, -0.011469463, 0.001709544, -0.016724006,
0.001623513, -0.004653649, 0.015391783, -0.009787643, 0.012054027,
-0.006147731, 0.008684403, 0.0116083, 0.005970491, -0.0022212,
-0.002334864, -0.003212548, 0.001961426, 0.006185922, 0.000162272,
0.013003945, 0.002452811, -0.024148212, 0.000709007, 0.001253167,
0.004021307, 0.012396408, -0.003165324, 0.004984868, 0.002456479,
-0.012883317, 0.010319898, -0.017422701, 0.022862134, 0.008051317,
0.014611797, 0.011835681, -0.021553118, -0.00157621, 0.007438873,
0.001512426, 0.007889997, -0.017946123, 0.005773688, 0.003917579,
0.001094178, -0.003338379, 0.011119308, NA, 0.001235776, 0.005850898,
-0.011045164, 0.011675648, -0.003999795, 0.012993319, -0.018810979,
0.001272197, -0.013546874, 0.021461647, 0.001627938, -0.005366457,
0.001054519, -0.010861897, -0.009366622, -0.032796993, 0.006259541,
0.025299861, 0.000161512, 0.006546141, 0.013229041, -0.002695348,
-0.003605136, 0.018470807, -0.011431692, 0.004892815, 0.00507788,
0.000574218, 0.003802385, 0.001506533, -0.00176651, 0.004410437,
0.010250161, 0.001075572, 0.007750791, -0.008723877, -0.009938546,
0.000310463, -0.023927217, -0.012158526, 5.31844e-05, -0.001277207,
-0.003894896, 0.006075806, 0.014506387, -0.018819607, 0.01798134,
0.008299236, 0.000467715, -0.003904323, -0.00161825, 0.008324277,
0.011026493, -0.007509551, 0.005971089, 0.001897096, -0.008539586,
0.001393944, 0.008220773, 0.003371478, -0.000765248, -0.001021242,
-0.011768167, 0.000413458, 0.003456017, -0.009000216, 0.004355046,
0.004233138, -0.008640145, -0.002966203, -0.002504698, -0.005553532,
0.000315176, -0.003841402, -0.004120885, 0.000105876, -0.016869028,
0.000484405, -0.004368114, -0.003627606, 5.42402e-05, -0.042774234,
0.001979359, -0.007713287, 0.027128113, -0.006281113, -0.006601423,
0.015151805, 0.01710193, 0.003905407, -0.006190625, -0.003984395,
-0.011993982, 0.000774593, -0.005601634, 0.022655758, -0.009341012,
-0.014761844, 0.016845178, 0.01349093, 0.012030866, 0.004793362,
0.003288779, 0.007281586, -0.002790283, 0.000790493, -0.014637154,
0.005279047, -0.003390472, 0.006394605, -0.003756578, 0.003381555,
-0.023530497, -0.001152738, -0.00501061, -0.00853711, -0.001560063,
0.008937304, 0.010007782, 0.006109221, -0.00152381, 0.004943916,
0.007182038, 0.00937214, -0.002615357, -0.003372684, -0.009565789,
-0.003466208, -0.002317498, -0.003874472, 0.007348708, -0.006313856,
-0.00373274, -0.012039273, -0.001136149, -0.003796512, 0.001520335,
-0.011459255, -0.010038694, -0.016432295, 0.001182732, -0.016286358,
-0.015742, 0.003654826, 0, 0.010483967, -0.004019298, -0.01174816,
-0.004492554, -0.006570866, -0.025455161, -0.010622577, 0.007235614,
-0.014093763, 0.008138833, 0.002130834, 0.017721983, 0.010815413,
-0.004145943, -0.001247142, 0.016502025, -0.003278691, -0.011560822,
-0.018441428, 0.007585371, -0.000419903, -0.012679798, 0.003820849,
-0.005097717, -0.021959978, 0.01082496, -0.004748552, 0.012043156,
-0.00772536, -0.001293382, 0.015835983, -0.007244864, 0.015701574,
0.004564134, -0.009149195, -0.007380107, 0.033237751, 0.004914015,
0.011960275, 0.016161086, 0.003028339, -0.000864304, -0.009120584,
0.00174368, 0.004779501, 0.001299545, 0.015890392, -0.009417878,
0, 0.006003449, 0.010208511, -0.008073126, 0.00595493, 0.011804522,
0.002093365, -0.001622718, -0.015548595, -0.015375329, 0.006261761,
0.007875688, 0.009860392, 0.008143367, 0.006467282, 0.005224042,
0.00838161, -0.009183534, 0.002003607, -0.022263619, -0.002048761,
0.004909993, -0.00122524, -0.001226743, 0.008150004, 0.013303966,
-0.00200441, 0.011966637, -0.00516797, 0.002786071, 0.001985309,
-0.006366914, 0.000798085, 0.00636185, 0.009860068, 0.000784621,
0, 0.001958864, -0.004707737, 0, -0.004509128, -0.006595242,
0.005773212, -0.005773212, -0.018364456, 0.012141661, -0.006680609
)), row.names = c(NA, -743L), class = "data.frame")
现在我有了另一个包含两列的数据帧。其中一列为每日无风险利率,另一列显示日期。数据帧(称为RF(如下:
structure(list(Date = structure(c(17744, 17745, 17746, 17749,
17750, 17751, 17752, 17753, 17756, 17757, 17758, 17759, 17760,
17763, 17764, 17765, 17766, 17767, 17770, 17771, 17772, 17773,
17774, 17777, 17778, 17779, 17780, 17781, 17784, 17785, 17786,
17787, 17788, 17791, 17792, 17793, 17794, 17795, 17798, 17799,
17800, 17801, 17802, 17805, 17806, 17807, 17808, 17809, 17812,
17813, 17814, 17815, 17816, 17819, 17820, 17821, 17822, 17823,
17826, 17827, 17828, 17829, 17830, 17833, 17834, 17835, 17836,
17837, 17840, 17841, 17842, 17843, 17844, 17847, 17848, 17849,
17850, 17851, 17854, 17855, 17856, 17857, 17858, 17861, 17862,
17863, 17864, 17865, 17868, 17869, 17870, 17871, 17872, 17875,
17876, 17877, 17878, 17879, 17882, 17883, 17884, 17885, 17886,
17889, 17890, 17891, 17892, 17893, 17896, 17897, 17898, 17899,
17900, 17903, 17904, 17905, 17906, 17907, 17910, 17911, 17912,
17913, 17914, 17917, 17918, 17919, 17920, 17921, 17924, 17925,
17926, 17927, 17928, 17931, 17932, 17933, 17934, 17935, 17938,
17939, 17940, 17941, 17942, 17945, 17946, 17947, 17948, 17949,
17952, 17953, 17954, 17955, 17956, 17959, 17960, 17961, 17962,
17963, 17966, 17967, 17968, 17969, 17970, 17973, 17974, 17975,
17976, 17977, 17980, 17981, 17982, 17983, 17984, 17987, 17988,
17989, 17990, 17991, 17994, 17995, 17996, 17997, 17998, 18001,
18002, 18003, 18004, 18005, 18008, 18009, 18010, 18011, 18012,
18015, 18016, 18017, 18018, 18019, 18022, 18023, 18024, 18025,
18026, 18029, 18030, 18031, 18032, 18033, 18036, 18037, 18038,
18039, 18040, 18043, 18044, 18045, 18046, 18047, 18050, 18051,
18052, 18053, 18054, 18057, 18058, 18059, 18060, 18061, 18064,
18065, 18066, 18067, 18068, 18071, 18072, 18073, 18074, 18075,
18078, 18079, 18080, 18081, 18082, 18085, 18086, 18087, 18088,
18089, 18092, 18093, 18094, 18095, 18096, 18099, 18100, 18101,
18102, 18103, 18106, 18107, 18108, 18109, 18110, 18113, 18114,
18115, 18116, 18117, 18120, 18121, 18122, 18123, 18124, 18127,
18128, 18129, 18130, 18131, 18134, 18135, 18136, 18137, 18138,
18141, 18142, 18143, 18144, 18145, 18148, 18149, 18150, 18151,
18152, 18155, 18156, 18157, 18158, 18159, 18162, 18163, 18164,
18165, 18166, 18169, 18170, 18171, 18172, 18173, 18176, 18177,
18178, 18179, 18180, 18183, 18184, 18185, 18186, 18187, 18190,
18191, 18192, 18193, 18194, 18197, 18198, 18199, 18200, 18201,
18204, 18205, 18206, 18207, 18208, 18211, 18212, 18213, 18214,
18215, 18218, 18219, 18220, 18221, 18222, 18225, 18226, 18227,
18228, 18229, 18232, 18233, 18234, 18235, 18236, 18239, 18240,
18241, 18242, 18243, 18246, 18247, 18248, 18249, 18250, 18253,
18254, 18255, 18256, 18257, 18260, 18261), class = "Date"), RF = c(0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01,
0.01, 0.01, 0.01, 0.01, 0.01, 0.01)), row.names = c(NA, -370L
), class = "data.frame")
有人能帮我做以下代码吗:
我希望RF数据帧中的无风险率(RF(在返回数据帧中。因此,对于返回数据帧中的每个日期,我希望从RF数据帧中获得相应的无风险利率。由于RF数据帧在2018-08-01至2019-12-31之间的每日日期比Return数据帧多,我在如何匹配这两个数据帧方面遇到了困难。
您可以使用left_join
通过Date
连接两个数据帧。您可以使用以下代码:
library(dplyr)
df <- left_join(returns, rf, by = "Date")
输出head(df)
如下所示:
Product_Name Date Return RF
1 A 2018-08-01 NA 0.01
2 A 2018-08-02 -0.021053409 0.01
3 A 2018-08-03 0.005850216 0.01
4 A 2018-08-06 -0.005968756 0.01
5 A 2018-08-07 0.012370563 0.01
6 A 2018-08-08 0.000760790 0.01
除了@PaulS在评论中建议的right_join
之外,将RF数据帧中的无风险率(RF(放入Return数据帧的另一种方法是使用full_join
。如果您想检查同一个Date
的数据帧中哪些数据可用,而另一个数据帧中没有,那么full_join
是非常合适的选项。
# Your data frames are Return and RF.
glimpse(Return)
# Rows: 743
# Columns: 3
# $ Product_Name <chr> "A", "A", "A", "A", "A", "A", "A", "A", "A", "~
# $ Date <date> 2018-08-01, 2018-08-02, 2018-08-03, 2018-08-0~
# $ Return <dbl> NA, -0.021053409, 0.005850216, -0.005968756, 0~
glimpse(RF)
# Rows: 370
# Columns: 2
# $ Date <date> 2018-08-01, 2018-08-02, 2018-08-03, 2018-08-06, 2018-~
# $ RF <dbl> 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, 0.01, ~
#Join Return with RF
library(dplyr)
joined <- Return %>% full_join(RF, by = "Date")
head(joined)
# Product_Name Date Return RF
# 1 A 2018-08-01 NA 0.01
# 2 A 2018-08-02 -0.021053409 0.01
# 3 A 2018-08-03 0.005850216 0.01
# 4 A 2018-08-06 -0.005968756 0.01
# 5 A 2018-08-07 0.012370563 0.01
# 6 A 2018-08-08 0.000760790 0.01
tail(joined)
# Product_Name Date Return RF
# 757 <NA> 2019-06-10 NA 0.01
# 758 <NA> 2019-08-15 NA 0.01
# 759 <NA> 2019-11-01 NA 0.01
# 760 <NA> 2019-12-24 NA 0.01
# 761 <NA> 2019-12-25 NA 0.01
# 762 <NA> 2019-12-26 NA 0.01
如果您想获得返回数据不可用的所有行,可以使用joined %>% filter(is.na(Return))
,这将导致:
# Product_Name Date Return RF
# 1 A 2018-08-01 NA 0.01
# 2 B 2018-08-01 NA 0.01
# 3 C 2018-08-01 NA 0.01
# 4 <NA> 2018-08-15 NA 0.01
# 5 <NA> 2018-11-01 NA 0.01
# 6 <NA> 2018-11-29 NA 0.01
# 7 <NA> 2018-11-30 NA 0.01
# 8 <NA> 2018-12-24 NA 0.01
# 9 <NA> 2018-12-25 NA 0.01
# 10 <NA> 2018-12-26 NA 0.01
# 11 <NA> 2019-01-01 NA 0.01
# 12 <NA> 2019-04-19 NA 0.01
# 13 <NA> 2019-04-22 NA 0.01
# 14 <NA> 2019-05-01 NA 0.01
# 15 <NA> 2019-05-09 NA 0.01
# 16 <NA> 2019-05-30 NA 0.01
# 17 <NA> 2019-06-10 NA 0.01
# 18 <NA> 2019-08-15 NA 0.01