在突变后更新动态依赖的对象属性



让我们以更新依赖对象属性问题的经典解决方案为例:

class SomeClass(object):
def __init__(self, n):
self.list = range(0, n)
@property
def list(self):
return self._list
@list.setter
def list(self, val):
self._list = val
self._listsquare = [x**2 for x in self._list ]
@property
def listsquare(self):
return self._listsquare
@listsquare.setter
def listsquare(self, val):
self.list = [int(pow(x, 0.5)) for x in val]

它根据需要工作:当为一个属性设置新值时,将更新另一个属性:

>>> c = SomeClass(5)
>>> c.listsquare
[0, 1, 4, 9, 16]
>>> c.list
[0, 1, 2, 3, 4]
>>> c.list = range(0,6)
>>> c.list
[0, 1, 2, 3, 4, 5]
>>> c.listsquare
[0, 1, 4, 9, 16, 25]
>>> c.listsquare = [x**2 for x in range(0,10)]
>>> c.list
[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

但是,如果我们改变属性list而不是将其设置为新值怎么办?

>>> c.list[0] = 10
>>> c.list
[10, 1, 2, 3, 4, 5, 6, 7, 8, 9]  # this is ok
>>> c.listsquare
[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]  # we would like 100 as first element

我们希望相应地更新listsquare属性,但事实并非如此,因为当我们改变list属性时不会调用 setter。

当然,我们可以通过在修改属性后显式调用 setter 来强制更新,例如通过执行以下操作:

>>> c.list[0] = 10
>>> c.list = c.list. # invoke setter
>>> c.listsquare
[100, 1, 4, 9, 16, 25, 36, 49, 64, 81]

但是对于用户来说,它看起来有些麻烦且容易出错,我们希望它隐式发生。

当修改另一个可变属性时,更新属性的最python方法是什么。对象如何知道他的一个属性已被修改?

因此,正如戴维斯·赫林(Davis Herring)在评论中所说,这是非常可能的,但远没有那么干净。您基本上必须构建自己的自定义数据结构,该结构并行维护两个列表,每个列表都知道另一个列表,以便如果一个列表被更新,另一个也会被更新。以下是我这样做的镜头,嗯,比预期的要长一点。似乎有效,但我还没有对其进行全面测试。

我选择从这里继承collections.UserList。另一种选择是继承collections.abc.MutableSequence,与UserList相比,它具有各种优点和缺点。

from __future__ import annotations
from collections import UserList
from abc import abstractmethod
from typing import (
Sequence,
TypeVar,
Generic, 
Optional,
Union,
Any, 
Iterable,
overload,
cast
)

### ABSTRACT CLASSES ###
# Initial type
I = TypeVar('I')
# Transformed type
T = TypeVar('T') 
# Return type for methods that return self
C = TypeVar('C', bound="AbstractListPairItem[Any, Any]")

class AbstractListPairItem(UserList[I], Generic[I, T]):
"""Base class for AbstractListPairParent  and AbstractListPairChild"""

__slots__ = '_other_list'
_other_list: AbstractListPairItem[T, I]
# UserList inherits from `collections.abc.MutableSequence`,
# which has `abc.ABCMeta` as its metaclass,
# so the @abstractmethod decorator works fine.
@abstractmethod
def __init__(self, initlist: Optional[Iterable[I]] = None) -> None:
# We inherit from UserList, which stores the sequence as a `list`
# in a `data` instance attribute
super().__init__(initlist)

@staticmethod
@abstractmethod
def transform(value: I) -> T: ...

@overload
def __setitem__(self, index: int, value: I) -> None: ...

@overload
def __setitem__(self, index: slice, value: Iterable[I]) -> None: ...

def __setitem__(
self, 
index: Union[int, slice], 
value: Union[I, Iterable[I]]
) -> None:

super().__setitem__(index, value)  # type: ignore[index, assignment]

if isinstance(index, int):
value = cast(I, value)
self._other_list.data[index] = self.transform(value)
elif isinstance(index, slice):
value = cast(Iterable[I], value)
for i, val in zip(range(index.start, index.stop, index.step), value):
self._other_list.data[i] = self.transform(val)
else:
raise NotImplementedError

# __getitem__ doesn't need to be altered

def __delitem__(self, index: Union[int, slice]) -> None:
super().__delitem__(index)
del self._other_list.data[index]

def __add__(self, other: Iterable[I]) -> list[I]:  # type: ignore[override]
# Return a normal list rather than an instance of this class
return self.data + list(other)

def __radd__(self, other: Iterable[I]) -> list[I]:
# Return a normal list rather than an instance of this class 
return list(other) + self.data

def __iadd__(self: C, other: Union[C, Iterable[I]]) -> C:
if isinstance(other, type(self)):
self.data += other.data
self._other_list.data += other._other_list.data
else:
new = list(other)
self.data += new
self._other_list.data += [self.transform(x) for x in new]
return self 

def __mul__(self, n: int) -> list[I]:  # type: ignore[override]
# Return a normal list rather than an instance of this class
return self.data * n
__rmul__ = __mul__

def __imul__(self: C, n: int) -> C:
self.data *= n
self._other_list.data *= n
return self 

def append(self, item: I) -> None:
super().append(item)
self._other_list.data.append(self.transform(item))
def insert(self, i: int, item: I) -> None:
super().insert(i, item)
self._other_list.data.insert(i, self.transform(item))
def pop(self, i: int = -1) -> I:
del self._other_list.data[i]
return self.data.pop(i)
def remove(self, item: I) -> None:
i = self.data.index(item)
del self.data[i]
del self._other_list.data[i]
def clear(self) -> None:
super().clear()
self._other_list.data.clear()

def copy(self) -> list[I]:  # type: ignore[override]
# Return a copy of the underlying data, NOT a new instance of this class
return self.data.copy()

def reverse(self) -> None:
super().reverse()
self._other_list.reverse()
def sort(self, /, *args: Any, **kwds: Any) -> None:
super().sort(*args, **kwds)
for i, elem in enumerate(self):
self._other_list.data[i] = self.transform(elem)
def extend(self: C, other: Union[C, Iterable[I]]) -> None:
self.__iadd__(other)

# Initial type for the parent, transformed type for the child.
X = TypeVar('X')
# Transformed type for the parent, initial type for  the child.
Y = TypeVar('Y')
# Return type for methods returning self
P = TypeVar('P', bound='AbstractListPairParent[Any, Any]')

class AbstractListPairParent(AbstractListPairItem[X, Y]):
__slots__: Sequence[str] = tuple()

child_cls: type[AbstractListPairChild[Y, X]] = NotImplemented

def __new__(cls: type[P], initlist: Optional[Iterable[X]] = None) -> P:
if not hasattr(cls, 'child_cls'): 
raise NotImplementedError(
"'ListPairParent' subclasses must have a 'child_cls' attribute"
)
return super().__new__(cls)  # type: ignore[no-any-return]

def __init__(self, initlist: Optional[Iterable[X]] = None) -> None:
super().__init__(initlist)
self._other_list = self.child_cls(
self, 
[self.transform(x) for x in self.data]
)

class AbstractListPairChild(AbstractListPairItem[Y, X]):
__slots__: Sequence[str] = tuple()

def __init__(
self, 
parent: AbstractListPairParent[X, Y], 
initlist: Optional[Iterable[Y]] = None
) -> None:

super().__init__(initlist)
self._other_list = parent


### CONCRETE IMPLEMENTATION ###

# Return type for methods returning self 
L = TypeVar('L', bound='ListKeepingTrackOfSquares')

# We have to define the child before we define the parent,
# since the parent creates the child
class SquaresList(AbstractListPairChild[int, int]):
__slots__: Sequence[str] = tuple()

_other_list: ListKeepingTrackOfSquares

@staticmethod
def transform(value: int) -> int:
return int(pow(value, 0.5))
@property
def sqrt(self) -> ListKeepingTrackOfSquares:
return self._other_list

class ListKeepingTrackOfSquares(AbstractListPairParent[int, int]):
__slots__: Sequence[str] = tuple()

_other_list: SquaresList
child_cls = SquaresList

@classmethod
def from_squares(cls: type[L], child_list: Iterable[int]) -> L:
return cls([cls.child_cls.transform(x) for x in child_list])

@staticmethod
def transform(value: int) -> int:
return value ** 2

@property
def squared(self) -> SquaresList:
return self._other_list

class SomeClass:
def __init__(self, n: int) -> None:
self.list = range(0, n)  # type: ignore[assignment]
@property
def list(self) -> ListKeepingTrackOfSquares:
return self._list

@list.setter
def list(self, val: Iterable[int]) -> None:
self._list = ListKeepingTrackOfSquares(val)
@property
def listsquare(self) -> SquaresList:
return self.list.squared

@listsquare.setter
def listsquare(self, val: Iterable[int]) -> None:
self.list = ListKeepingTrackOfSquares.from_squares(val)

s = SomeClass(10)

最新更新