我试图让我的CSV与nlarge处理,我已经遇到了这个错误。有什么原因吗?我试着去理解它,但它似乎就是没有消失。
import pandas as pd
from matplotlib import pyplot
from sklearn.feature_selection import SelectKBest
from sklearn.feature_selection import chi2
from pandas import read_csv
from pandas.plotting import scatter_matrix
filename = '/Users/rahulparmeshwar/Documents/Algo Bots/Data/Live Data/Tester.csv'
data = pd.read_csv(filename)
columnname = 'Scores'
bestfeatures = SelectKBest(k='all')
y = data['Vol']
X = data.drop('Open',axis=1)
fit = bestfeatures.fit(X,y)
dfscores = pd.DataFrame(fit.scores_)
dfcolumns = pd.DataFrame(X.columns)
featurescores = pd.concat([dfscores,dfcolumns],axis=1)
print(featurescores.nlargest(5,[columnname]))
它给出了错误Scores
,上面的异常是导致下面最后一行print(featurescores.nlargest(5,[columnname]))
异常的直接原因。有人能给我解释一下为什么会这样吗?我到处看了看,似乎还是想不明白。
编辑:完整错误堆栈:
Exception has occurred: KeyError 'Scores'
上述异常是导致以下异常的直接原因:
File "C:UsersmattrOneDriveDocumentsPython AIAI.py", line 19, in <module> print(featurescores.nlargest(2,'Scores'))
异常KeyError
表示连接的数据框featurescores
没有名为"Scores"的列。
问题是创建的DataFramesdfscores
和dfcolumns
没有明确定义列名,因此它们的单个列名将是"default"0
。也就是说,在连接之后,您会得到一个类似于以下内容的数据框(featurescores
):
0 0
0 xxx col1_name
1 xxx col2_name
2 xxx col3_name
...
如果要按名称引用列,则应该显式地定义列名,如下所示:
>>> dfscores = pd.DataFrame(fit.scores_, columns=["Scores"])
>>> dfcolumns = pd.DataFrame(X.columns, columns=["Features"])
>>> featurescores = pd.concat([dfscores,dfcolumns], axis=1)
>>> print(featurescores.nlargest(5, "Scores"))
Scores Features
0 xxx col_name1
1 xxx col_name2
2 xxx col_name3
...
如果您想使用这些特性作为索引,下面是一行代码:
>>> featurescores = pd.DataFrame(data=fit.scores_.transpose(), index=X.columns.transpose(), columns=["Scores"])
>>> print(featurescores)
Scores
col_name1 xxx
col_name2 xxx
col_name3 xxx
...