如何将CSV中的列表JSON文件解析为数据框架


[{"Apertura":35,"Apertura_Homogeneo":35,"Cantidad_Operaciones":1,"Cierre":35,"Cierre_Homogeneo":35,"Denominacion":"INSUMOS AGROQUIMICOS S.A.","Fecha":"02/02/2018","Maximo":35,"Maximo_Homogeneo":35,"Minimo":35,"Minimo_Homogeneo":35,"Monto_Operado_Pesos":175,"Promedio":35,"Promedio_Homogeneo":35,"Simbolo":"INAG","Variacion":-5.15,"Variacion_Homogeneo":0,"Vencimiento":"48hs","Volumen_Nominal":5},
{"Apertura":34.95,"Apertura_Homogeneo":34.95,"Cantidad_Operaciones":2,"Cierre":34.95,"Cierre_Homogeneo":34.95,"Denominacion":"INSUMOS AGROQUIMICOS S.A.","Fecha":"05/02/2018","Maximo":34.95,"Maximo_Homogeneo":34.95,"Minimo":34.95,"Minimo_Homogeneo":34.95,"Monto_Operado_Pesos":5243,"Promedio":-79228162514264337593543950335,"Promedio_Homogeneo":-79228162514264337593543950335,"Simbolo":"INAG","Variacion":-0.14,"Variacion_Homogeneo":-0.14,"Vencimiento":"48hs","Volumen_Nominal":150},
{"Apertura":32.10,"Apertura_Homogeneo":32.10,"Cantidad_Operaciones":2,"Cierre":32.10,"Cierre_Homogeneo":32.10,"Denominacion":"INSUMOS AGROQUIMICOS S.A.","Fecha":"07/02/2018","Maximo":32.10,"Maximo_Homogeneo":32.10,"Minimo":32.10,"Minimo_Homogeneo":32.10,"Monto_Operado_Pesos":98756,"Promedio":32.10,"Promedio_Homogeneo":32.10,"Simbolo":"INAG","Variacion":-8.16,"Variacion_Homogeneo":-8.88,"Vencimiento":"48hs","Volumen_Nominal":3076}]

,你好在上面的相同示例中,如果我确实得到一个数据为Arpertura.csv的CSV文件,我如何在PANDAS数据框架中导入和解析它?真正的文件只有几gb大。我想得到Sum Volumen_Nominal适用于所有光圈(3076+150+5)和其他一些切片和骰子。

谢谢。赤壁市

我尝试用

导入CSV文件
df = pd.read_csv(r'filename')
df_json = df.to_JSON()
pd.read_json(_, orient='split')

,但它不会工作。我认为前面的列表结构必须被删除。

现在得到的结果是标题=[{"Apertura":35,"Apertura_Homogeneo":35,"Cantidad_Operaciones":1,"Cierre":35,"Cierre_Homogeneo":35,"Denominacion":"INSUMOS AGROQUIMICOS S.A.","Fecha":"02/02/2018","Maximo":35,"Maximo_Homogeneo":35,"Minimo":35,"Minimo_Homogeneo":35,"Monto_Operado_Pesos":175,"Promedio":35,"Promedio_Homogeneo":35,"Simbolo":"INAG","Variacion":-5.15,"Variacion_Homogeneo":0,"Vencimiento":"48hs","Volumen_Nominal":5}

正文以开头

{"Apertura":34.95,"Apertura_Homogeneo":34.95,"Cantidad_Operaciones":2,"Cierre":34.95,"Cierre_Homogeneo":34.95,"Denominacion":"INSUMOS AGROQUIMICOS S.A.","Fecha":"05/02/2018","Maximo":34.95,"Maximo_Homogeneo":34.95,"Minimo":34.95,"Minimo_Homogeneo":34.95,"Monto_Operado_Pesos":5243,"Promedio":-79228162514264337593543950335,"Promedio_Homogeneo":-79228162514264337593543950335,"Simbolo":"INAG","Variacion":-0.14,"Variacion_Homogeneo":-0.14,"Vencimiento":"48hs","Volumen_Nominal":150}

您不需要将数据帧转换为json和json。如果想要列的和,可以使用:

df = pd.read_csv(r'filename')
df["Volumen_Nominal"].sum()

相关内容

  • 没有找到相关文章

最新更新