Keras Transformer:不兼容的形状[64,8,20,20]与[64,64,20,20]



我正在编写一个使用自动编码器将文本从英语翻译成西班牙语的示例(链接(。我的代码设置与示例完全一样,但它失败了,错误是:

不兼容的形状:[64,8,20,20]与[64,64,20,20][{{节点gradient_tape/transformer_encoder/multi_head_attetion/softmax/add/BBroadcastGradientArgs}]][操作:__推理_训练_功能_16963]

这是我的完整代码:

with open('spa.txt', encoding="utf8") as f:
lines = f.read().split("n")[:-1]
text_pairs = []
for line in lines:
eng, spa = line.split("t")
spa = "[start] " + spa + " [end]"
text_pairs.append((eng, spa))
random.shuffle(text_pairs)
num_val_samples = int(0.15 * len(text_pairs))
num_train_samples = len(text_pairs) - 2 * num_val_samples
train_pairs = text_pairs[:num_train_samples]
val_pairs = text_pairs[num_train_samples : num_train_samples + num_val_samples]
test_pairs = text_pairs[num_train_samples + num_val_samples :]
strip_chars = string.punctuation + "¿"
strip_chars = strip_chars.replace("[", "")
strip_chars = strip_chars.replace("]", "")
vocab_size = 15000
sequence_length = 20
batch_size = 64

def custom_standardization(input_string):
lowercase = tf.strings.lower(input_string)
return tf.strings.regex_replace(lowercase, "[%s]" % re.escape(strip_chars), "")

eng_vectorization = TextVectorization(
max_tokens=vocab_size, output_mode="int", output_sequence_length=sequence_length,
)
spa_vectorization = TextVectorization(
max_tokens=vocab_size,
output_mode="int",
output_sequence_length=sequence_length + 1,
standardize=custom_standardization,
)
train_eng_texts = [pair[0] for pair in train_pairs]
train_spa_texts = [pair[1] for pair in train_pairs]
eng_vectorization.adapt(train_eng_texts)
spa_vectorization.adapt(train_spa_texts)
def format_dataset(eng, spa):
eng = eng_vectorization(eng)
spa = spa_vectorization(spa)
return ({"encoder_inputs": eng, "decoder_inputs": spa[:, :-1],}, spa[:, 1:])

def make_dataset(pairs):
eng_texts, spa_texts = zip(*pairs)
eng_texts = list(eng_texts)
spa_texts = list(spa_texts)
dataset = tf.data.Dataset.from_tensor_slices((eng_texts, spa_texts))
dataset = dataset.batch(batch_size)
dataset = dataset.map(format_dataset)
return dataset.shuffle(2048).prefetch(16).cache()

train_ds = make_dataset(train_pairs)
val_ds = make_dataset(val_pairs)
class TransformerEncoder(layers.Layer):
def __init__(self, embed_dim, dense_dim, num_heads, **kwargs):
super(TransformerEncoder, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.dense_dim = dense_dim
self.num_heads = num_heads
self.attention = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[layers.Dense(dense_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, mask=None):
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, tf.newaxis, :], dtype="int32")
attention_output = self.attention(
query=inputs, value=inputs, key=inputs, attention_mask=padding_mask
)
proj_input = self.layernorm_1(inputs + attention_output)
proj_output = self.dense_proj(proj_input)
return self.layernorm_2(proj_input + proj_output)

class PositionalEmbedding(layers.Layer):
def __init__(self, sequence_length, vocab_size, embed_dim, **kwargs):
super(PositionalEmbedding, self).__init__(**kwargs)
self.token_embeddings = layers.Embedding(
input_dim=vocab_size, output_dim=embed_dim
)
self.position_embeddings = layers.Embedding(
input_dim=sequence_length, output_dim=embed_dim
)
self.sequence_length = sequence_length
self.vocab_size = vocab_size
self.embed_dim = embed_dim
def call(self, inputs):
length = tf.shape(inputs)[-1]
positions = tf.range(start=0, limit=length, delta=1)
embedded_tokens = self.token_embeddings(inputs)
embedded_positions = self.position_embeddings(positions)
return embedded_tokens + embedded_positions
def compute_mask(self, inputs, mask=None):
return tf.math.not_equal(inputs, 0)

class TransformerDecoder(layers.Layer):
def __init__(self, embed_dim, latent_dim, num_heads, **kwargs):
super(TransformerDecoder, self).__init__(**kwargs)
self.embed_dim = embed_dim
self.latent_dim = latent_dim
self.num_heads = num_heads
self.attention_1 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.attention_2 = layers.MultiHeadAttention(
num_heads=num_heads, key_dim=embed_dim
)
self.dense_proj = keras.Sequential(
[layers.Dense(latent_dim, activation="relu"), layers.Dense(embed_dim),]
)
self.layernorm_1 = layers.LayerNormalization()
self.layernorm_2 = layers.LayerNormalization()
self.layernorm_3 = layers.LayerNormalization()
self.supports_masking = True
def call(self, inputs, encoder_outputs, mask=None):
causal_mask = self.get_causal_attention_mask(inputs)
if mask is not None:
padding_mask = tf.cast(mask[:, tf.newaxis, :], dtype="int32")
padding_mask = tf.minimum(padding_mask, causal_mask)
attention_output_1 = self.attention_1(
query=inputs, value=inputs, key=inputs, attention_mask=causal_mask
)
out_1 = self.layernorm_1(inputs + attention_output_1)
attention_output_2 = self.attention_2(
query=out_1,
value=encoder_outputs,
key=encoder_outputs,
attention_mask=padding_mask,
)
out_2 = self.layernorm_2(out_1 + attention_output_2)
proj_output = self.dense_proj(out_2)
return self.layernorm_3(out_2 + proj_output)
def get_causal_attention_mask(self, inputs):
input_shape = tf.shape(inputs)
batch_size, sequence_length = input_shape[0], input_shape[1]
i = tf.range(sequence_length)[:, tf.newaxis]
j = tf.range(sequence_length)
mask = tf.cast(i >= j, dtype="int32")
mask = tf.reshape(mask, (1, input_shape[1], input_shape[1]))
mult = tf.concat(
[tf.expand_dims(batch_size, -1), tf.constant([1, 1], dtype=tf.int32)],
axis=0,
)
return tf.tile(mask, mult)
embed_dim = 256
latent_dim = 2048
num_heads = 8
encoder_inputs = keras.Input(shape=(None,), dtype="int64", name="encoder_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(encoder_inputs)
encoder_outputs = TransformerEncoder(embed_dim, latent_dim, num_heads)(x)
encoder = keras.Model(encoder_inputs, encoder_outputs)
decoder_inputs = keras.Input(shape=(None,), dtype="int64", name="decoder_inputs")
encoded_seq_inputs = keras.Input(shape=(None, embed_dim), name="decoder_state_inputs")
x = PositionalEmbedding(sequence_length, vocab_size, embed_dim)(decoder_inputs)
x = TransformerDecoder(embed_dim, latent_dim, num_heads)(x, encoded_seq_inputs)
x = layers.Dropout(0.5)(x)
decoder_outputs = layers.Dense(vocab_size, activation="softmax")(x)
decoder = keras.Model([decoder_inputs, encoded_seq_inputs], decoder_outputs)
decoder_outputs = decoder([decoder_inputs, encoder_outputs])
transformer = keras.Model(
[encoder_inputs, decoder_inputs], decoder_outputs, name="transformer"
)
epochs = 1  # This should be at least 30 for convergence
transformer.summary()
transformer.compile(
"rmsprop", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)
transformer.fit(train_ds, epochs=epochs, validation_data=val_ds)

如果您能帮我克服这个错误,我将不胜感激。

谢谢!

更新1

因此,我能够通过确保num_headsbatch_size相同来克服这个错误。但这听起来不对。所以我向团队提出的问题是,他们总是需要一样吗?Keras的例子明显不同,那么它是如何工作的呢?

我遇到了同样的问题。我发现一件有趣的事情是,我可以在colab中运行代码,但当我刚刚将其复制到本地jupyter笔记本时,却未能运行相同的代码。

此外,我认为没有必要将num_headsbatch_size保持相同,因为如果训练数据的大小不是batch_size的倍数,则每个批次的大小在训练期间都会发生变化,而num_heads是常数。这将导致另一个不兼容的形状错误。

相关内容

  • 没有找到相关文章

最新更新