2个GPS坐标之间的距离



输入图像描述这里我有一个gps数据(经度和纬度)和一个tripId的数据框,我想计算每个gps坐标(每行)之间的距离为每个tripId,是否可以添加一个新的列"距离"其中包含的结果(i将有sum(row)-1)?

-   timestamp           longitude   latitude    tripId 
0   2021-04-30 21:13:53 8.211610    53.189479   1790767 
1   2021-04-30 21:13:54 8.211462    53.189479   1790767 
2   2021-04-30 21:13:55 8.211367    53.189476   1790767 
3   2021-04-30 21:13:56 8.211343    53.189479   1790767 
4   2021-04-30 21:13:57 8.211335    53.189490   1790767 
5   2021-04-30 21:13:59 8.211338    53.189491   1790767 
6   2021-04-30 21:14:00 8.211299    53.189479   1790767 
7   2021-04-30 21:14:01 8.211311    53.189468   1790767 
8   2021-04-30 21:14:02 8.211327    53.189446   1790767 
9   2021-04-30 21:14:03 8.211338    53.189430   1790767

我已经测试了它的前10行,但仍然不工作

import math
def haversine(coord1, coord2):
R = 6372800 # Earth radius in meters
lat1, lon1 = coord1
lat2, lon2 = coord2

phi1, phi2 = math.radians(lat1), math.radians(lat2)
dphi = math.radians(lat2 - lat1)
dlambda = math.radians(lon2 - lon1)

a = math.sin(dphi/2)**2 + 
math.cos(phi1)*math.cos(phi2)*math.sin(dlambda/2)**2

return 2*R*math.atan2(math.sqrt(a), math.sqrt(1 - a))

x= df.tripId[0]

for i in range(0,10):
while(df.tripId[i]== x):
coord1= df.latitude[i], df.longitude[i]
coord2= df.latitude[i+1], df.longitude[i+1]
df.distance=haversine(coord1, coord2)

haversine模块已经包含了一个可以直接处理向量的函数。由于输入数据已经是一个数据帧,因此应该使用haversine_vector。你可以用它直接计算距离列,即使你的数据帧包含多个idTrip值:

def calc_dist(df):
s = pd.Series(haversine.haversine_vector(df, df.shift()),
index=df.index, name='distance')
return pd.DataFrame(s)
df = pd.concat([df, df.groupby('idTrip')[['latitude', 'longitude']].apply(calc_dist)],
axis=1)

从您的示例数据中,它给出:

-            timestamp  longitude   latitude   tripId  distance
0  2021-04-30 21:13:53   8.211610  53.189479  1790767       NaN
1  2021-04-30 21:13:54   8.211462  53.189479  1790767  0.009860
2  2021-04-30 21:13:55   8.211367  53.189476  1790767  0.006338
3  2021-04-30 21:13:56   8.211343  53.189479  1790767  0.001633
4  2021-04-30 21:13:57   8.211335  53.189490  1790767  0.001334
5  2021-04-30 21:13:59   8.211338  53.189491  1790767  0.000229
6  2021-04-30 21:14:00   8.211299  53.189479  1790767  0.002921
7  2021-04-30 21:14:01   8.211311  53.189468  1790767  0.001461
8  2021-04-30 21:14:02   8.211327  53.189446  1790767  0.002668
9  2021-04-30 21:14:03   8.211338  53.189430  1790767  0.001924

相关内容

  • 没有找到相关文章

最新更新